
CATMAID Documentation
Release 2021.12.21

CATMAID Developers

Dec 21, 2021

CONTENTS

1 Documentation 7
1.1 User Documentation . 7
1.2 Administrator Documentation . 62
1.3 Developer Documentation . 123

Index 155

i

ii

CATMAID Documentation, Release 2021.12.21

The Collaborative Annotation Toolkit for Massive Amounts of Image Data

Features:

• Fast terabyte-scale image data browsing

• Collaborative microcircuit reconstruction and annotation

• Flexible hierarchical semantic annotation

• Multiple linked image stack display

• Neuron Catalog

• SVG and WebGL-based neuronal morphology viewer

• Open source software (GPLv3)

User interface

CONTENTS 1

https://www.tldrlegal.com/l/gpl-3.0

CATMAID Documentation, Release 2021.12.21

2 CONTENTS

CATMAID Documentation, Release 2021.12.21

CONTENTS 3

CATMAID Documentation, Release 2021.12.21

4 CONTENTS

CATMAID Documentation, Release 2021.12.21

CONTENTS 5

CATMAID Documentation, Release 2021.12.21

6 CONTENTS

CHAPTER

ONE

DOCUMENTATION

1.1 User Documentation

1.1.1 Introduction

CATMAID is a Collaborative Annotation Toolkit for Massive Amounts of Image Data. It is designed to navigate,
share and collaboratively annotate massive image data sets of biological specimens. The interface is inspired by
GoogleMaps, with which it shares basic navigation concepts, enhanced to allow the exploration of 3D biological
image data acquired by optical or physical sectioning microscopy techniques. The interface enables seamless sharing
of regions of interest through bookmarks and synchronized navigation through multiple registered data sets.

With massive biological image data sets it is unrealistic to create a sustainable centralized repository. A unique
feature of CATMAID is its partially decentralized architecture where the presented image data can reside on any
Internet accessible server and yet can be easily cross-referenced in the central database. In this way no image data are
duplicated and the data producers retain full control over their images.

CATMAID is intended to serve as data sharing platform for biologists using high-resolution imaging techniques to
probe large specimens. Any high-throughput, high-content imaging project such as gene expression pattern screens
would benefit from the interface for data sharing and annotation.

1.1.2 Screenshots and videos

1.1.3 Tools

CATMAID includes a set of tools to navigate, share and annotate large image data sets. These tools often contain
some control elements to modify certain parameters. This could e.g. be sliders, buttons or input boxes. Most of the
controls offer various ways for changing a value and so sliders and input boxes can be changed with the help of the
mouse wheel, small buttons or direct input.

The tools visible to a user can be set in the admin interface on a per user basis. See the section about user profiles to
learn how to modify the visible tools and how to set defaults suiting your use case.

7

CATMAID Documentation, Release 2021.12.21

Fig. 1: The CATMAID User Interface with skeleton annotations and tags

Navigation

The navigation tool makes it easy to browse a data set. It allows you to specify the center of the current view and
provides controls to change the current slice and zoom level. Keep in mind that a zoom-level defines how often the
images dimension get divided by two (i.e. dim/2^zoom). A change of these controls will redraw the current view.

Clicking and dragging the view with the mouse can be used to move around on the current slice.

Tagging

Projects and stacks can be associated with tags. Tags are basically strings that capture some property of an object.
They can contain spaces and any other alphanumerical character. CATMAID’s tagging tool will allow you to view and
modify the tags of an active stack and of the project it belongs to. Changes will only be applied when the check icon
on the right is clicked.

Cropping

With the help of the cropping tool it is possible to extract sub-stacks out of the currently viewed stack and other stacks
in the project. The region of interest can be specified by clicking with the left mouse button on the view and dragging
the created rectangle to the desired shape. This rectangle can be created and adjusted as well with the help of the four
input boxes in the cropping tool bar.

By default only one slice is created. However, by using the “top z-index” and “bottom z-index” sliders, the range in
the Z dimension can be modified. The “zoom-level” slider denotes what the zoom level of the output image will be.
It is perfectly fine to draw a crop box in a view with zoom level three and let the cropping tool create an output stack
based on zoom level zero. Note that one can easily increase the output file size with operations like this.

8 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Fig. 2: CATMAID comes with a 3D viewer

1.1. User Documentation 9

CATMAID Documentation, Release 2021.12.21

Fig. 3: 3D View of Drosophila Larval CNS Tracing by Albert Cardona’s lab at HHMI Janelia Research Campus and
collaborators.

Fig. 4: Orthogonal views of the same image stack are supported by CATMAID

10 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Fig. 5: CATMAID’s Skeleton Node and Connector Table

1.1. User Documentation 11

CATMAID Documentation, Release 2021.12.21

Fig. 6: CATMAID’s Selector tool: Mirrored mouse cursor in all open stacks
Some tile sources in CATMAID support dynamic settings

If there is more than one stack in the current project available, a menu, labeled “Stacks”, is shown as well. All the
available stacks of the project are listed there and can be selected for output. By default only the current stack is
marked. For all the selected stacks the same region of interest is used. The resulting cropped stack will contain all the
selected stacks and its dimensions are XYCZ ordered. That means, that the current slice is appended to the output for
every stack before the next Z step is made.

To start the cropping job, one needs to click on the tickmark on the right. A confirmation message should appear. You
will get a notification in the message view once the sub-stack has been cropped. By default, cropped sub-stacks will
remain for two weeks on the server. This can be adjusted by configuring a periodic task that manages the clean-up.
See the section about creating periodic tasks for an example how to do this.

The output image is a TIFF file with potentially multiple pages, with each one being an RGB image. The file contains
some meta data: the EXIF tags XResolution and YResolution of every image contain the created image’s X
and Y resolution, respectively – in pixel per nanometer (if the image resolution in the data base is nano meter based).
The ImageDescription tag contains ImageJ specific meta data. It passes information about the number of images,
the channels and whether to use hyperstacks to ImageJ.

12 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

_static/screenshots/catmaid-nblast-landmarks-pointcloud-kc.png

Fig. 7: Landmark based transformation of neurons on the right side of the Drosophila larva brain to its left side and
NBLAST matching for identification.

1.1. User Documentation 13

CATMAID Documentation, Release 2021.12.21

Ontology Tools

The documentation of the ontology tools can be found on a separate page.

1.1.4 Instructions for Tracing Neurons

Quick Start

There are step-by-step instructions below, but as a quick-reference, once you’re in tracing mode, the following mouse
operations and keyboard shortcuts should mostly be what you need:

• click on a node: make that node active

• ctrl-click in space: deselect the active node

• ctrl-shift-click on a node: delete that node

• shift-click on a treenode: join two skeletons (if there was an active treenode)

• shift-click in space: create a synapse (if there was an active treenode)

• shift-click in space: create a post-synaptic treenode (if there was an active synapse)

• mouse wheel: move up and down layers in the stack

• + and -: zoom in and out

(If you’re using Mac OS, then in every instance you need to use instead of ctrl.) For help on other keyboard
shortcuts, click on the “?” button in the toolbar.

14 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Basic Tracing

Before you can start tracing, you need to log in. You can do this in the boxes in the top right hand corner of the page.

Basic Concepts

There are two modes that you’ll use in these instructions. The “navigate” mode is for moving fast around the stack,
and is the default mode - it’s shown in the toolbar with this icon:

To move around in this mode you can:

• Click and drag with the mouse to pan around the dataset, as in Google maps

• Use the mouse wheel to scroll through sections

• Press ‘,’ and ‘.’ to move one slice up or down the stack

• Press ‘<’ and ‘>’ to move ten slices up or down the stack

• Press ‘-‘ to zoom out

• Press ‘+’ to zoom in

• Click on a section of the overview in the bottom right hand corner to jump to that area

In this mode you won’t see any of the tracing annotations, however.

First, zoom in on an area that you’d like to start tracing in and click on the icon to change to tracing mode:

If there are any treenodes in view, you’ll now see them as magenta dots:

1.1. User Documentation 15

CATMAID Documentation, Release 2021.12.21

To place the first node in a new neuron’s skeleton, just left-click within a membrane that doesn’t already have node in
it. You should see a green node appear, like this:

The green node is always the active node.

16 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

The Active Node

The active node is important, since any new node you create by clicking will be linked to that node. To make a different
node the active node, just left-click on it.

(If you want to create a completely new skeleton, there must be no active node - to deselect it, hold down Control
(or on Mac OS) and left-click somewhere other than on a node, or press D.)

Try clicking elsewhere within this layer to create a line of nodes. Try changing the active node to one of the middle
nodes, and continue clicking to create a branch.

You can move any node by clicking on it and dragging it around.

Deleting Nodes

To delete a node, hold down Control (or on Mac OS) and Shift, and left-click on the node, or activate the node
and press Delete.

Navigating between Nodes

While you can navigate through nodes in a skeleton by changing slices and clicking on nodes, this is cumbersome.
Instead, there are many key shortcuts to navigate through a skeleton based on its topology and other annotations.

The simplest navigation shortcuts are moving closer to or further from the root node. Pressing [will move to the
parent of the active node, closer to the root node. Pressing] will move to the child of the active node, further from the
root node. If the active node is a branch point, one of the children will be selected at random.

To discover more ways to navigate nodes, like finding leaf nodes without children, click the question mark icon in the
toolbar to see a list of keyboard shortcuts.

Splitting Skeletons

To split a skeleton into two, select the node at which you want to split the skeleton, and then click on the “Split
Skeleton” icon in the toolbar, which looks like this:

A dialog will appear with a 3D rendering of the skeleton, so you can visualize what each skeleton will look like once
the split is made. If you are satisfied with the split, press the ‘Ok’ button. You will then end up with two skeletons.
All parts of the skeleton from the root node up to and including the split point will still be in the original skeleton, but
the nodes downstream from that point will be in a new skeleton and neuron.

Joining Skeletons

To join one skeleton to another so that they form a single skeleton, activate the node in one skeleton where you would
like the join to occur, then hold down Shift and left-click on a node in the other skeleton. (You may not join any
part of a skeleton to itself.)

1.1. User Documentation 17

CATMAID Documentation, Release 2021.12.21

Tagging Nodes

To add a tag to the active node, press T. You should see something like the following:

Then you can type a tag:

. . . and press Enter:

To actually save your tag to the database, press Enter again:

At any time, you can toggle the visibility of the tags with this button in the toolbar:

18 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Creating Synapses

There are two possible ways of creating synapses. The recommended way unless you have many to annotate is the
following:

Suppose you have traced up to the active node in this screenshot (the green node) and want to annotate the nearby
synapse:

If you shift-click on the synaptic cleft (or where you think it should be) you’ll see a larger green circle appear, which
is a connector:

1.1. User Documentation 19

CATMAID Documentation, Release 2021.12.21

The red arrow leading to the large connector indicates that your original node is presynaptic to the connector. Then
you can add a postsynaptic partner by shift-clicking in the center of a membrane that appears to be postsynaptic:

By repeating the last step you can mark multiple postsynaptic partners:

20 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

When you have finished, click on the origin node again to make it active and you can carry on tracing.

Dropping Multiple Synapses

The alternative approach to creating synapse is to switch to synapse-dropping mode with this button in the toolbar:

Once you’ve selected that mode, any click in space on in the interface will create a synapse, so you can add many in
one go, without needing to start by linking them from a treenode:

1.1. User Documentation 21

CATMAID Documentation, Release 2021.12.21

In order to carry on tracing, you need to switch back to the normal tracing mode with this button:

22 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Exploring Skeletons and Neurons

You may need to find a particular node of a skeleton, for example if it was tagged with TODO and you need to go
back to it. The easiest way to locate particular nodes in a skeleton is to select a node in that skeleton and click on the
Neuron Navigator button:

A window will open containing a new Neuron Navigator, which is a widget for exploring neurons and their annotations.
CATMAID has many widgets to help catalog, explore, and analyze your data. In the section of the Neuron Navigator
for the active neuron, click the Treenode Table button:

This will bring up a table of all the nodes in that skeleton:

You can sort this table by clicking in the column headings. To go to a particular node, just double click on the row.
To filter by node type, select an option from the dropdown in the table header. Find the TODO-tagged node you are

1.1. User Documentation 23

CATMAID Documentation, Release 2021.12.21

looking for by typing “TODO” in the text input in the tags header and press Enter:

1.1.5 Training tracers

Like with most things, to get good at tracing neurons, some training is needed. The introduction for tracing neurons
helps with first steps, but managing a whole team and being confident in the quality of the results, will require some
supervision. There are of course many ways on how to go about this, and an ad-hoc approach is surely fine for smaller
groups. Below we show one example of a systematic approach that was developed by Ruchi Parekh and trainers in the
Connectome Annotation Team (CAT) at Janelia Research Campus, where it worked for groups of tracers with 20 and
more people.

Systematic training and evaluation

This approach trains new users in using CATMAID and was developed with the FAFB dataset in mind along with
manually reconstructed neurons that have been published for it. New trainees follow first the introductory training to
get familiar with both the dataset and software, which is described in the next section. A small collection of training
videos highlights some basic workflows in CATMAID.

Once the introductory training is completed, trainees will do the training pipeline, explained in the second part.
There, tracers were asked to reconstruct particular neurons in increasing difficulty, highlighting different aspects of
CATMAID and the dataset.

For any questions on the training protocol, please email Ruchi Parekh (parekhr@janelia.hhmi.org).

Introductory Training Protocol

This training protocol is meant to introduce manual neuron reconstruction with CATMAID, using the FAFB dataset.
This dataset consists of the EM data of the brain of a female adult Drosophila melanogaster. at a resolution of 4 x
4 x 40 nm/vx. An example on how such a brain is dissected and prepared, Janelia’s FlyLight team has some helpful
videos. It might also be worthwile to check out the standard fly brain nomenclature. A publicly accessible CATMAID
server can be found at spaces.itanna.org, which allows creating personal and shared training projects for the FAFBv14
dataset. Virtual Fly Brain also hosts a read-only version of the FAFB dataset. For those interested in a broader context
on the training neurons and in further understanding of the mushroom body, have a look here and here.

When introducing new trainees to CATMAID, the following rough outline seemed like a useful path to take:

• Open FAFB project from front page

• Browse EM data

• Open Tracing Tool, select a few neurons by both clicking and G key

• Open 3D Viewer and add a neuron, demo space manipulation

24 Chapter 1. Documentation

https://www.janelia.org/support-team/connectome-annotation
http://temca2data.org/
https://www.janelia.org/project-team/flylight/protocols
https://www.sciencedirect.com/science/article/pii/S0896627313011781
https://spaces.itanna.io/catmaid/itanna
http://catmaid.virtualflybrain.org/
http://dx.doi.org/10.7554/eLife.04577.004
https://onlinelibrary.wiley.com

CATMAID Documentation, Release 2021.12.21

• Activate node in 3D to see in EM

• Link from 3D Viewer to EM gray space (F10 function)

• Volume display of neuropils/whole brains (Volumes & Geometry tab in 3D)

• Provide a general intro to hot keys, help page (F1 or ? icon) and context help (upper right corner)

Trainers create seed nodes for new trainees, named after their initials (see video linked above). Assuming this has been
done, the following steps are taken in order to provide an introduction that provides trainees with the skills required to
actually step through the training pipeline.

Protocol

Each trainee will look at three intro neurons, before they can move to the training pipeline above: 1. PN -> 2. KC ->
3. PN -> 4. Pipeline.

1. Select Neuron Search widget (toolbar icon: tag and question mark)

2. Enter neuron number (users initials) from trainer

3. Click on neuron seed number in window, append in 3D widget using ‘Active skeleton’ Start with Projection
Neuron (PN)

4. Start at seed node (will be the active node) and place a ‘TODO’ tag - go to step 1 ‘Projection Neuron (PN)’
section of protocol

5. Once finished with step 1 PN, trainee will be assigned a Kenyon Cell (KC) - Repeat above steps - Go to step 2
‘Kenyon Cell (KC)’ section of protocol

6. Once finished with step 2 KC, trainee will return to finish PN - Repeat above steps - Go to step 3 ‘Projection
neuron (PN)’ section of protocol

7. Once finished with step 3 PN, trainee will move into the pipeline

1. PN - Projection Neuron

Besides 1. and 2. in the image above, the goals are also

3. Review own work

1.1. User Documentation 25

CATMAID Documentation, Release 2021.12.21

4. Review with trainer

At end of PN - you should know

Neuroanatomy

• Recognize a branching point

• Understand the 3D of branching structures

• Recognize a synapse - Understand 4 major indicators

• Recognize differences in morphology of a bouton and fingers of a claw

• Preliminary understanding of ‘stringiness’ (it’s not a characteristic of the neuron itself- it’s a term we’ve given
to describe the morphological ‘look’ of the neuron)

Tracing

• Place nodes in center

• Create connecting skeletons

• Create “clean” skeleton (i.e. a biologically realistic neuronal skeleton)

• Check your neuron going “forward” and “backward”

• Know how to go from an active node without forming parallel lines

• To tackle small jumps and crappy section

Software

• +/- to zoom in and out of EM stack

• Searching for neuron

• 3D viewer - zoom, rotate, activate a node, pre, post and meta tags, taking off bounding box and floor, coloring
neuron etc

• F10 function

• Tags - L, K, N

• Untag - shift + whatever tag you need to untag (ex: shift+L gets rid of TODO)

• “keyboard shortcut help”

2. KC - Kenyon Cell

26 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Besides 1. to 4. in the image above, the goal is also

5. Review own work

6. Review with Trainer

At end of KC - you should know

All “you should know”s from PN + the following:

Neuroanatomy

• See further examples of synapses

– See and recognize structural differences in synapses in KC and PN (especially in the calyx vs lobes)

– Discuss how some indicators are more prevalent in different brain regions (vesicle clumping in PN boutons
vs KC lobes)

– Discuss different types of syn (e.g. en passant and en face)

• Differences in pedunculus, lobe, and calyx EM anatomy and 3D morphology (refer to Illustration/explanation
provided by trainer)

Tracing

• Continue to understand how each node helps shape the 3D morphology of the neuron

• Know how to correctly tag soma

• Know how to properly use uncertain tags

3. PN - Projection Neuron

Besides 1. in the image above, the goal is also

2. Review own work

3. Review 1-1 with Trainer

At end of PN - you should know

All “you should know”s from PN + KC + the following:

Neuroanatomy

• Synapses in detail (bouton to claw)

1.1. User Documentation 27

CATMAID Documentation, Release 2021.12.21

• Invagination

• Cistern/ER

• Vacuole

• Vesicles

• Synaptic cleft

• Mitochondria

• Microtubules - follow for continuations

• Understand the above neurobiology in general context with the understanding that each may look different in
different brain regions

Tracing

• Solid understanding of difference between PN trunk/KC pedunculus (tract) synapse and bouton/calyx (dendritic)
synapse

Software

• Good sense of the hot keys and how to navigate them without a trainer

Synapse information

Identify a synapse:

• T-bars - presynaptic protein where vesicles bind and neurotransmitter is released

• Vesicles - small neurotransmitter filled spheres

– Important to identify clumping around T-bars

– Scroll between sections to determine how long T-bars and vesicles exist

• Synaptic cleft - extracellular space where neurotransmitter diffuses to postsynaptic partners.

– The cleft is located between the T-bar and the postsynaptic cells

• Postsynaptic density (PSD) - postsynaptic receptor proteins that signify uptake of neurotransmitter

28 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Note the movement across the first two images of the second row.

Neurons used in training

• 4PN and 4KC neurons used in training. (Neurons used in training in 2019)

• Uniglomerular mALT VC3l adPN 23135 BH

• Uniglomerular mALT VM5d adPN 49866 JMR

• Uniglomerular mALT VC1 lPN 22133 BH

• Uniglomerular mALT VC3l adPN 46801 JMR

• KCaBs 515202 NM

• KCaBc 514395 NM

• KCaBs 31268 IJA

• KCaBs 7675 EW AJ

Training materials

CAT Trainer, Henrique Ludwig, has created short tutorials explaining some common tasks within the FAFB training
environment, available as a playlist or here individually:

1.1. User Documentation 29

https://youtube.com/playlist?list=PLqugYeeugrPdWXz8KNuUOZ55tZCbMyFSp

CATMAID Documentation, Release 2021.12.21

Training pipeline

We found that going through four levels of difficulty over the course of multiple weeks gave tracers the skills they
needed. We started with asking trainees to look at 22 neurons, eventually settled on 18 though, where the easiest level
now includes only a single neuron. A shared spreadsheet was used to keep track of the progress of all trainees. This
was also used as a means of communication between trainees and trainers. An example of such a spreadsheet is shown
as table below can be downloaded as Open Document Spreadsheet or Excel format.

30 Chapter 1. Documentation

_static/tracing/training/cat-training-pipeline.ods
_static/tracing/training/cat-training-pipeline.xlsx

CATMAID Documentation, Release 2021.12.21

Table 1: CAT Training Pipeline
Neuron
name

CAT
L1-
5
“ini-
tials”

CAT
L2-
1

CAT
L2-
2

CAT
L2-
3

CAT
L2-
4

CAT
L2-
5

CAT
L3-
1

CAT
L3-
2

CAT
L3-
3

CAT
L3-
4

CAT
L3-
5

CAT
L4-
1A

CAT
L4-
1B

CAT
L4-
2A

CAT
L4-
2B

CAT
L4-
3A

CAT
L4-
3B

CAT
L4-
3C

If
soma
and
soma
tract
found,
then
stop
trac-
ing

Brain
re-
gion

CommisureLO LH LP MB PB-
EB-
gall

ConnectivesNoduliPB EB GNG – MB PB-
EB-
NO

PB-
EB-
NO

LP LP LP

Cell
type

Giant
fiber
in-
put
in-
terneu-
ron

LC4
neu-
ron

Projection
neu-
ron

VSN KC
-
CA

PB-
EB-
gall

CNN PB-
EB-
NO

PB-
EB-
NO

PB-
EB-
NO

VCN Giant
fiber
branch

PN PB-
EB-
NO

PB-
EB-
NO

LPLCLPLCHSE

What
to
trace

Main
trunk
skele-
ton
only

Trace
ar-
boriza-
tion
only
(no
synapses)

Trace
ar-
boriza-
tion
only
(no
synapses)

Trunk
+
soma
tract
+
soma
(no
synapses)

Skeleton
+
synapses
+
soma
tract
+
soma

Skeleton
+
synapses

Skeleton
(no
synapses)

Skeleton
+
synapses

Skeleton
+
soma
tract
+
soma
+
synapses

Skeleton
+
synapses
(trac-
ing
re-
viewed
at
1
week
mark)

Skeleton
(no
synapses)
**

Skeleton
+
synapses

Skeleton
+
synapses

Skeleton
(no
synapses)

Skeleton
(no
synapses)

Skeleton
(no
synapses)
+
soma
+
soma
tract

Skeleton
(no
synapses)
+
soma
+
soma
tract

Skeleton
(no
synapses)
+
soma
+
soma
tract

Where
to
trace
(Z)

Start
on
3470
to-
wards
3469.
Stop
on
3256.

Start
on
4771
to-
wards
4772

Start
on
4622
to-
wards
4621

Start
on
5368
to-
wards
5369
and
stop
at
end
node
tagged
with
“DO
NOT
PRO-
CEED”.
There
will
be
a
small
soma
tract
be-
tween
the
tagged
end
node
and
seed
node
-
do
not
trace
be-
yond
the
two
nodes!

Start
on
4991
to-
wards
4992

Start
on
1635
to-
wards
1636

Start
on
5397
to-
wards
5398

Start
on
2869
to-
wards
2868

Start
on
4423
to-
wards
4424

Start
on
2889
to-
wards
2888

Start
on
5588
seed
node
to-
wards
5055
end
node
(only
stop
at
5055
if
there
is
an
end
node
with
tag
“DO
NOT
PRO-
CEED”.
Con-
tinue
if
there
is
no
end
node)

Start
on
3795
to-
wards
3796

Start
on
4874
to-
wards
4875

Start
on
3569
seed
node
to-
wards
3570.
Stop
on
“DO
NOT
PRO-
CEED”
end
node
3698

Start
on
2364
seed
node
to-
wards
2365.
Stop
on
“DO
NOT
PRO-
CEED”
end
node
2559

Start
on
4291
to-
wards
4292.
Stop
on
“DO
NOT
PRO-
CEED”
end
node
4925.
Find
and
trace
soma
tract
be-
tween
start
and
end
nodes

Start
on
5638
to-
wards
5637.
Stop
on
4682.
Find
and
trace
soma
tract
be-
tween
start
and
end
sec-
tions

Start
on
6271
to-
wards
6272.
Stop
on
tagged
as
“DO
NOT
PRO-
CEED”
end
node
5830
(only
stop
on
sec-
tion
5830
if
this
tag
ex-
ists).
Find
and
trace
soma
tract
be-
tween
start
and
end
nodes

Review

Trainee
A
Trainee
B
Trainee
C

1.1. User Documentation 31

CATMAID Documentation, Release 2021.12.21

Generally, the training pipeline follows following steps:

1. Trainee - Select “your” neuron name from above CAT LX-X list and search in CATMAID

2. Trainee - Trace neuron

3. Trainee - On completion - update progress sheet

4. Trainee - Pick next neuron from list

5. Trainer - Review completed neuron

6. Trainer - Update progress sheet

Example neuron names in the training dataset are:

• CAT L1-1 SC

• CAT L2-4 LR

• CAT L1-3 AW

• CAT L5-1 TP

• CAT L4-4 CP

• CAT L3-1 SA

The status of each training neuron for each trainee follows the following color code:

Table 2: Status colors
Trainee working on tracing Trainee completed tracing Trainer completed review Tracing on hold

While tracing, trainees where advised to follow the following general guidelines regarding the use of node tags and
edge confidence values:

• use uncertain continuation/uncertain ends as necessary, however you will be evaluated based on how you use it

• L2-2 onwards - place confidence intervals as described below for uncertain continuations/ends

• L3-5 - If needed, clarify instructions with trainer

With confidence values assigned through the numeric keys 1-5 should be used like the following:

Table 3: Confidence intervals
5 4 3 2 1

I
am

100% 75% 50% 25% 0% sure it con-
tinues/ends

don’t add #
5 to node

add # 4 to node add # 3
to node

add # 2
to node

add # 1
to node

continue
tracing

continue tracing if uncertain continua-
tion or stop if uncertain end

stop
tracing

stop
tracing

stop
tracing

While also using the following rules on deciding when to mark an uncertain continuation with a tag versus a low
confidence value:

And in addition:

• Trainees should ask questions if confused about where to stop

• USE uncertain tags when confused about anything

32 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

This document allows trainees to move through a defined and comparable process to learn about CATMAID and
tracing, as well as the dataset itself.

A Trainer would guide new trainees according to the above plan and track their progress using the different color codes
above in the trainee’s “swim lane”.

1.1.6 Annotations

One central way to organize neurons and other spatial data structures in CATMAID is to use text annotations. They
can be added to neurons and to annotations themselves, allowing hierarchies and nomenclatures of annotations.

There are a few special annotations that CATMAID will interpret in a particular way. The most commonly one is
likely the locked annotation. If present on a neuron, no part of the skeleton can be changed anymore. The section
below will introduce more special annotations:

Annotations can be added in many places within CATMAID. Often times widgets contain an “Annotate” button. The
active skeleton can be annotated using the F3 key. This dialog shows also the present annotations and allows to add
meta-annotations, which are simply annotations on annotations. In order to do that, click on the “Click here to also
add a meta annotation” text link. The Neuron Navigator widget is also a useful simple widget to see the annotations
of the current neuron.

Special Annotations

The annotations below have meaning in some context within CATMAID. Whether they need to be applied to neurons
or annotations is noted in the description.

locked If present on neuron, no change in morphology is allowed anymore.

stable If present on neuron, during a join, the back-end will enforce that it is the winner in the join, i.e. its ID re-
mains. If both join partners have this annotation, the join is canceled. This annotation can be configured through
the Settings Widget for users with can_administer permissions on a project. Only the project/instance level
config is respected by the back-end.

export: annotations If present on a “publication annotation”, it is interpreted by the exporter to export
annotations for the respective set of neurons, grouped by the publication annotation.

export: no-annotations If present on a “publication annotation”, it is interpreted by the exporter to not
export annotations for the respective set of neurons, grouped by the publication annotation.

export: tags If present on a “publication annotation”, it is interpreted by the exporter to export tags for the
respective set of neurons, grouped by the publication annotation.

export: no-tags If present on a “publication annotation”, it is interpreted by the exporter to not export tags
for the respective set of neurons, grouped by the publication annotation.

export: intra-connectors-only If present on a “publication annotation”, it is interpreted by the exporter
to export only the connectors linking between the members of the respective set of neurons, grouped by the
publication annotation.

export: intra-connectors-and-placeholders If present on a “publication annotation”, it is inter-
preted by the exporter to export only the connectors linking between the members of the respective set of
neurons, grouped by the publication annotation. Additionally placeholder nodes with random IDs and data will
be exported to reflect additional connections.

export: intra-connectors-and-original-placeholders If present on a “publication annotation”,
it is interpreted by the exporter to export only the connectors linking between the members of the respective set
of neurons, grouped by the publication annotation. Additionally placeholder nodes with the original IDs and
data will be exported to reflect additional connections.

1.1. User Documentation 33

CATMAID Documentation, Release 2021.12.21

export: no-connectors If present on a “publication annotation”, it is interpreted by the exporter not to export
connectors linking between the members of the set of neurons grouped by the publication annotation.

1.1.7 Widgets

Graph Widget

Pair Statistics

Review Widget

Selection Table

1.1.8 Using the CATMAID API

You may want to query data or perform analyses in ways that are not possible through the CATMAID client. Scripting
the CATMAID client is sufficient for some cases, but others require direct access to annotation data, especially for use
in a programming environment like Python or R. For these cases, the same HTTP API that the CATMAID client uses
is exposed to other clients.

API Documentation

Documentation for endpoints exposed by the HTTP API is available here online and from the CATMAID server itself
via the /apis/ page:

http://localhost:8000/apis/

. . . or, for custom configurations:

http://<catmaid_servername>/<catmaid_subdirectory>/apis/

The API documentation list groups of related endpoints, like “skeletons”, and specific HTTP methods (“GET”,
“POST”, etc.) and URIs for calling each endpoint.

Clicking on one of these endpoints opens detailed documentation including a description of what the endpoint does,
what parameters is expects and accepts, and how the response is structured. The form at the bottom of the endpoint
documentation allows it to be invoked directly using values provided in the form fields.

Warning: Remember that API documentation forms operate on actual data on the CATMAID server. Be careful
not to unintentionally destroy or modify data.

Changes to the API are documented in the API changelog.

34 Chapter 1. Documentation

https://github.com/catmaid/CATMAID/wiki/Scripting
https://github.com/catmaid/CATMAID/wiki/Scripting
https://github.com/catmaid/CATMAID/blob/master/API_CHANGELOG.md

CATMAID Documentation, Release 2021.12.21

1.1. User Documentation 35

CATMAID Documentation, Release 2021.12.21

Undocumented API

Only a subset of the HTTP endpoints exposed by CATMAID are documented. While the documentation attempts to
cover endpoints most likely to be useful for external analysis, undocumented endpoints can still be accessed if they
are useful.

Undocumented endpoints can be discovered by looking through urls.py in the CATMAID source. This file routes URI
patterns to Python functions, e.g.:

urlpatterns += patterns('catmaid.control.treenode',
#...
(r'^(?P<project_id>\d+)/treenode/delete$', 'delete_treenode'),

)

routes a URI like /{project_id}/treenode/delete to Python function delete_treenode, which is in
the file django/applications/catmaid/control/treenode.py. Using an undocumented endpoint re-
quires inspecting the Python function to see what parameters it expects.

Note that the undocumented API is considered volatile and changes to it are not included in the API changelog.

API Token

The CATMAID API authorizes requests using an API token tied to user account instead of a username and password.
To obtain your API token, open the CATMAID client in your browser, hover your cursor over your name (next to the
“Logout” link), and click “Get API token”.

As a security measure, you will be prompted to re-enter your password, then shown your token string.

To use the API token, set the HTTP X-Authorization header on all of your API requests to be “Token”, a space,
and the token string, e.g.:

X-Authorization: Token 9944b09199c62bcf9418ad846dd0e4bbdfc6ee4b

CATMAID uses X-Authorization rather than Authorization so that it does not conflict with server-level
HTTP authorization.

Warning: Requests using your token can do anything your account can do, so do not distribute your token or
check it into source control.

36 Chapter 1. Documentation

https://github.com/catmaid/CATMAID/blob/master/django/applications/catmaid/urls.py

CATMAID Documentation, Release 2021.12.21

Example API Use

Command line

The perhaps easiest way to talk to the CATMAID API is to use the curl command line tool:

curl --header 'X-Authorization: Token <auth-token>' -X GET '<catmaid-url>'

If the CATMAID instance requires basic HTTP authentication, you can add the -u <user>:<pass> parameter to
the curl command. For intance, to get all currently available node tags in a project with ID 1 from the CATMAID
instance hosted at https://example.com/catmaid/ using basic HTTP authentication with user “myuser” and
password “mypass”, you can do the following:

curl --header 'X-Authorization: Token 9944b09199c62bcf9418ad846dd0e4bbdfc6ee4b' \
-u myuser:mypass -X GET 'https://example.com/catmaid/1/labels'

Python

The lowest-friction way to access the CATMAID API using python is through the catpy package, which handles all
of the boilerplate, includes a number of tools for working with CATMAID data, and is just a pip install catpy
away. For more information, see `the catpy docs<https://catpy.readthedocs.io>`_.

If for some reason you are unable to use catpy, below is a minimal example of accessing the API of a CATMAID
server running on localhost using the Requests Python package:

import requests
from requests.auth import HTTPBasicAuth

class CatmaidApiTokenAuth(HTTPBasicAuth):
"""Attaches HTTP X-Authorization Token headers to the given Request.
Optionally, Basic HTTP Authentication can be used in parallel.
"""
def __init__(self, token, username=None, password=None):

super(CatmaidApiTokenAuth, self).__init__(username, password)
self.token = token

def __call__(self, r):
r.headers['X-Authorization'] = 'Token {}'.format(self.token)
if self.username and self.password:

super(CatmaidApiTokenAuth, self).__call__(r)
return r

Replace these fake values with your own.
token = "9944b09199c62bcf9418ad846dd0e4bbdfc6ee4b"
project_id = 1
object_ids = [42]

label_response = requests.get(
'https://localhost/{}/labels'.format(project_id),
auth=CatmaidApiTokenAuth(token))

annotation_response = requests.post(
'https://localhost/{}/annotations/query'.format(project_id),
auth=CatmaidApiTokenAuth(token),
data={'object_ids': object_ids})

1.1. User Documentation 37

http://docs.python-requests.org/en/latest/index.html

CATMAID Documentation, Release 2021.12.21

Other API Clients

A partial listing of libraries or programs that consume the CATMAID HTTP API:

catpy Official python 2.7 and 3.4+ client by members of the Cardona lab

RCATMAID R bindings for the CATMAID API by Gregory Jefferis.

CATMAID-to-Blender A Blender-Plugin to pull data from CATMAID by Philipp Schlegel

1.1.9 API Reference

1.1.10 Volumes

Besides skeletons CATMAID can also generate and display 3D meshes, which it calls volumes. At the moment the
support is basic, but can be useful already. They are arbitrary triangle meshes or polyhedra, stored as PostGIS data for
fast access. Volumes are associated to projects and can currently not be shared between them without data duplication.

The 3D Viewer’s “View settings” tab allows to mark known volumes as visible. Checkboxes for individual volumes
are accessible from a drop down menu. If a volume becomes visible, it takes the currently selected opacity and color
from the color selector close to the drop down menu. If the “Faces” option is selected, filled triangles are displayed
rather than a wireframe.

And since CATMAID’s 3D viewer supports a textured Z plane, the volume’s intersection with an image stack can be
visually inspected as well. However, there is not yet a way to show volumes as a layer in a stack viewer.

Volumes are also accessible from the Volume Manager widget, which can be opened with the help of the 3D cube
icon in the Tracing Tool’s button panel. It shows all available volumes and some meta information on them. Double
clicking table entries allows users to edit basic information, like its name. Additionally, the volume’s bounding box
is displayed on top of the image data of the active stack viewer. The mesh itself is not editable from CATMAID’s
web-client at this point.

The volume widget also provides means to generate new volumes based on neurons, synapses or simply as a bounding
box. The sub-sections below provide some detail on this.

Besides display, CATMAID can currently use volumes only to warn if nodes are created outside of them. This is
useful, for instance, if one wants to constrain neuron reconstruction to a given compartment. To select a volume for
which warnings should be generated open the settings widget and open the section called “Warnings”. If a volume is
selected from the drop down menu, warnings will be generated for the current session.

Volume generation

In CATMAID, volumes can either be added through the volume manager or directly through the HTTP API.

Volume manager

Pressing the “Add new volume” button brings up a user interface to generate and add new volumes. The first thing to
do is to select the new volume’s type, available are bounding box, convex hull and alpha shape. The first is simply an
axis aligned box, previewed in the tracing layer. After configuration, “Save” can be pressed to store the volume on the
server. Bounding boxes are currently the only volumes that can be edited after they have been created.

The remaining two volume types require a point set to operate on and can be previewed in the 3D viewer (it will take
the first one open). For both a skeleton source can be selected on which different filters can further constrain the set
of treenodes that are actually used. This es especially useful if a compartment is already reconstructed and a convex
or concave hull describes it reasonably well. The skeletons’ treenodes can be used create volumes. Alternatively, one
can create new dummy neurons for the sole purpose pf volume generation by roughly outlining a compartment.

38 Chapter 1. Documentation

https://catpy.readthedocs.io
https://catpy.readthedocs.io/en/latest/authors.html
https://github.com/natverse/rcatmaid
http://www2.mrc-lmb.cam.ac.uk/group-leaders/h-to-m/gregory-jefferis/
https://github.com/schlegelp/CATMAID-to-Blender

CATMAID Documentation, Release 2021.12.21

Skeletons can contain a lot of treenodes. Therefore, to reduce computation costs, and to provide more flexibility it is
possible to apply filters to the input set of treenodes (coming from the selected skeleton source). One could for instance
select only branch nodes, roots or connectors. It is possible to add multiple filters at the same time. All filters work
on the nodes of the skeletons provided by the selected source. The results of all filters are combined with, optionally
different, set operations. A union merges both results and takes all; an intersection only allows what is in both sets.
This happens in a left associative fashion (or, here, since a table representation is used, “top associative”). Each filter
operates on the same set of input nodes and only their combination creates the final result. By default, if no filter is
used, all nodes from the input skeletons are used.

To add a filter, select the type, configure it through the settings below the type selection and press “Add new filter rule”
and continue with the next filter.

An example: Add an “Only branch nodes” filter and then select a new type, say Synaptic connections to other neurons
and select a merge operation . For synaptic connections, you now can select the partners (or choose None for any
partner) and the type of relation that is required. After the second filter is added, you have a point set of branch nodes
and connector nodes. Now you can go ahead and adjust the actual volume properties, e.g. the alpha value (to filter out
particular tetrahedra, or optionally triangles).

Pressing the “Add new volume” button will generate the mesh. Keep in mind that volumes are materialized after they
are created and currently can’t be edited after creation. The screenshot below is taken during the volume generation
using alpha shapes on a set of filtered skeletons. It shows a preview from the Volume Manager and as can be seen,
disconnected meshes are supported as well.

1.1. User Documentation 39

CATMAID Documentation, Release 2021.12.21

API

If wanted, volumes can also be created outside of CATMAID and then loaded into into it through its HTTP API. As
long as it is possible to represent them as a generic triangle mesh, loading them into CATMAID should be easy. The
HTTP endpoint to use is:

/{project_id}/volumes/add

For more details on the API itself, consult the API documentation, which is available under /apis on every CAT-
MAID instance.

To store a volume through the API, you have to create a POST request which contains the fields “type” (set to
“trimesh”), “title” (a representative title) and “mesh”. It is expected to be a string that encodes two lists in JSON
format: [[points], [triangles]]. The list of points contains lists of three numbers, each one representing a vertex in the
mesh. The array of triangles also contains three element lists as items. Each one represents a triangle based on the
points in the other array, that are referenced by the triangle index values. For instance, this would constitute a valid set
of fields for the creation request:

title: "Example mesh"
type: "trimesh"
mesh: "[[[0,0,0], [1,0,0], [0,1,0], [1,1,0]], [[0,1,2], [1,3,2]]]"

If everything went well, the endpoint should return a response with two JSON fields: “success” (should be true) and
“volume_id”, which holds he ID of the newly created volume.

If you have an API token generated for your CATMAID user, you could also use curl, to load the mesh from a JSON
file (having the fields above):

curl -X POST -d @<json-file> <catmaid_url>/<project_id>/volumes/add \
--header "Content-Type: application/json" \
--header "X-Authorization: Token <api-token>"

where <catmaid_url> is the URL of your CATMAID instance, <json-file> being the file path to a JSON file represent-
ing the data to send (see above), <project_id> is the project ID (visible when creating a link to a view) and <api-token>
being your API token.

1.1.11 Workflows

Combining the functionality of different tools in CATMAID can be lead to smaller and bigger workflows. This section
is a collection of common tasks.

Neuron tracing in a limited area

Goal: each user should trace only in a defined subvolume in the dataset, for instance a cube.

Workflow:

1. Define a volume/mesh for each tracer in which they are supposed to trace. You do this by opening the Volume
Manager and select the “Add volume” tab. By default, the box type is already selected, which is what you want.
Navigate the view to to the center of the cube the user should trace in, enter a cube edge length in the “Cube at current
location” field and click “Define cube at current location”. You can view a preview in both the tracing layer and all
3D Viewers. It’s advisable to give the volume a reasonable names there to find the volumes in list and submenus (like
the 3D Viewer). Finally, press “Save”, the volume should be visible in the list on the “Main tab”. From there you can
also list all skeletons and connectors in a volume and other actions. The third tab in the Volume Manager allows you
to find all the volumes a particular set of skeleton innervates.

40 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

2. With the volume created, you can define a “tracing warning” in the Settings Widget. It’s almost at the bottom of the
widget, or you filter by “warning” in the top input box. In the warning section you can select a volume in which new
nodes are supposed to be. If they are outside, a warning message is displayed.

1.1.12 Frequently Asked (User) Questions

Why can I only export WebM movies from the 3D viewer?

There is currently no easy way to generate other formats from within a browser. Besides, WebM is a reasonable effort
to standardize and it seems to be the future play-everywhere codec. However, you can use other tools to convert the
generated WebM movie to your preferred video format (e.g. to play it in PowerPoint). A convenient GUI tool to do
this is Handbrake. Alternatively, if you prefer the command line, you could use ffmpeg:

ffmpeg -y -i input.webm -vcodec libx264 output.mov

or avconv:

avconv -i input.webm -vcodec copy output.mov

Also note that ffmpeg (or rather the H264 codec) expects the input to have a width and height of an
even number. To crop the input movie on the fly, the following option can be added: -filter:v
"crop=<width>:<height>:0:0", replacing <width> and <height> with the desired width and height in
pixels.

What are skeleton source subscriptions?

Many tracing related widgets allow to react to changes in skeleton lists in other widgets. Widgets supporting this got a
new small chain icon in their title bar with which a subscription management user interface can be shown and hidden.
Widgets that contain multiple sources, like the connectivity matrix, have one icon per source. A hover title will show
which one to use for each source.

The UI allows to add subscriptions to multiple sources which can then be combined through set operations. Currently
sources are combined in a strict left-associative fashion from top to bottom of the list. When “Override existing”
is checked, widget local skeletons are not used when subscriptions are refreshed and will subsequently be removed.
Otherwise, the local set is united with the first subscription before all other subscription sources are applied.

The scope of individual subscriptions can be adjusted: By default each subscription reacts to skeletons added, removed
and updated in a source. The “Filter” selection allows to listen to only one of these events. For instance, subscribing
to the active skeleton with the “Only additions” filter, allows to collect skeletons selected active skeletons without
removing them again from a widget.

By default, only selected skeletons are subscribed to. This means if a skeleton becomes unselected in a source it is
removed from the target widget. If the “Only selected” checkbox is unchecked, also unselected skeletons are added to
a target widget. They are removed when skeletons are removed from the source and their selection state is synced.

1.1. User Documentation 41

https://handbrake.fr/

CATMAID Documentation, Release 2021.12.21

How to make a local copy of image data available?

CATMAID represents multiple copies of image data as so-called stack mirrors. Which mirror is used can be selected
in the image layer settings dialog, which can be opened through the little blue-white square button in the lower left
corner of a stack viewer. Besides mirrors configured by an administrator, it is also possible to add custom mirrors.
Custom mirrors are persisted in a browser cookie and will be available after reloading CATMAID. The ‘Add’ button
in the ‘Custom mirror’ section of the layer settings will bring up a dialog where a new custom mirror can be added.
Nearly all required fields are pre-populated from an existing mirror, only a URL has to be added.

The image data available from this URL has to match the properties in the dialog, which should normally be the case
if the image data is a copy of an existing image stack. Additionally, it is recommended that this data is made available
through HTTPS. As an example, a common use case is to have a copy of the image data set on an external USB SSD
drive. To make this data available to CATMAID, a local webserver has to be started. An easy way to do this is to grab
a copy of a simple Python server script available from the CATMAID source repository. Save a copy of this script in
the root folder of the USB SDD along with a copy of the certificate, which is available from the same location and
should be placed next to the serve-directory.py script. Next navigate with a terminal to the root of the image
data and execute the Python script:

python serve-directory.py 8090 ./localhost.pem

The first argument is the port on which the server will be made available and the second argument is the downlaoded
previously SSL certificate. If everything works as expected, the URL to put in CATMAID’s custom mirror dialog
should be:

https://localhost:8090/

If the image data is not directly available in the USB SDD’s root, the relative path has to be added to the URL.

How to create the small overview images in the lower right corner?

It is possible to show a small overview image of the current section in the lower right corner. Generally, CATMAID
looks for them as small.<extension> (e.g. small.jpg) using the (remote) path for the current Z coordinate
and makes the file fit into 192x192px. These files can be created of course in many ways and here is one waay doing
ths using graphicsmagick (or alternatively imagemagick):

It makes sense to use the highest zoom level as possible, becasue we make the image only smaller and the less data to
process the quicker we have our images. Also, in this simple example, it means that we don’t need to combine tiles
and only have to deal with a single image.

Let’s assume we have nine zoom levels and the data will occupy only one tile at this zoom level, i.e. the highest value
displayed in the UI as z-index is 8, because zoom-levels are zero-indexed. Like said above, CATMAID wants these
files to fit into 192x192px, so we need to find out how much we need to scale the zoom-level. However, at this zoom
level, there will be zome extra void data, because the scaled-down dataset is less wide than the defined tile width. If
we know our image data has a larger width than height, we can compute the actual width of the data at zoom-level
9 through <dataset-width-at-zoom-0>/2**<zoom-level-to-use>). This can be used to obtain the
scale factor required for the 192x overview image, which in turn can be used to find out by how much to scale a tile at
that zoom level so that the data it contains fits into the 192x192px overview image:

new_tile_width = (192 / (<dataset-width-at-zoom-0>/2**<zoom-level-to-use>)) * <tile-
→˓width>

For instance, a dataset that has a width of 135200 at zoom level zero, a tile size of 1024px and nine zoom levels:

744.55 = (192 / (135200/2**9)) * 1024

42 Chapter 1. Documentation

https://github.com/catmaid/CATMAID/blob/master/scripts/data/serve-directory.py
https://github.com/catmaid/CATMAID/blob/master/scripts/data/localhost.pem

CATMAID Documentation, Release 2021.12.21

From a tile that is scaled to this width, we would then only use the top left cutout for the overview, the rest is empty
data. This can be done using convert tool (of the graphicsmagick or imagemagick package):

convert /path/to/input/tile/ -resize <data-width-at-zoom>x -gravity NorthWest -extent
→˓<overview-width>x<overview-height> /path/to/z/directory/small.<extension>

Sticking to the example above, and assuming data in a tile source type type 4 (“Backslash tile source”) directory
structure under /data/tiles/ and file extension jpg, this command could look like the following to generate the
overview for section 0:

convert /data/tiles/0/9/0_0.jpg -resize 745x -gravity NorthWest -extent 192x170 /data/
→˓tiles/0/small.jpg

To run this for the whole image stack, a small Bash loop can be used:

for f in (ls /data/tiles/); do convert /data/tiles/f/9/0_0.jpg -resize 745x -gravity
→˓NorthWest -extent 192x170 /data/tiles/$f/small.jpg; done

Note that the 170px height of the the overview image can be computed by scaling the original data so that its width
fits into 192px. If the data was taller than wide, the height would be 192px and the width adjusted.

1.1.13 Exporting and Importing Data

For importing, there are currently two different tool-sets available in CATMAID. A front-end in Django’s admin
interface is only available for importing project and stack information. If you want to import tracing data, you have to
resort to the command line.

Exporting and importing neuron tracing data

Two management commands for Django’s manage.py tool are available in CATMAID that allow exporting and
importing neuron tracing data. They are called catmaid_export_data and catmaid_import_data. To
use them, you have to be in the virtualenv and it is probably easiest to work from the django/projects/
directory.

Exporting data

At the moment, the export command is able to create a JSON representation of neurons, connectors, tags and
annotations. To constrain the exported neurons, annotations can be used. To export data, you have to use the
catmaid_export_data command:

manage.py catmaid_export_data

Adding the --help option will show an overview over all available options. When called without any option, the
command will ask the user for the project to export from and will start exporting the whole project right away. Use the
additional options to be more precise about what should be exported.

Without any parameter, everything is exported. The type of data to be exported can be adjusted by the
--notreenodes, --noconnectors, --noannotations and --notags parameters. To constrain the ex-
ported neurons, the --required-annotation option can be used. For instance, to export all neurons from the
project with ID 1 that are annotated with “Kenyon cells”, one would have to call:

manage.py catmaid_export_data --source 1 --required-annotation "Kenyon cells"

1.1. User Documentation 43

CATMAID Documentation, Release 2021.12.21

This will create a file called export_pid_<pid>.json, which would be export_pid_1.json in our case. A
different file name can be specified using the --file option and if the passed in string contains “{}”, the braces will
be replaced by the source project ID.

Users are represented by their usernames and it is not required to export user model objects as well. The importer
can either map to existing users or create new ones. If wanted, though, complete user models can be exported (and
imported) as well by providing the --users option. Be aware though that this includes the hashed user passwords.

Importing data

The JSON file generated in the previous section can be used to import data into a CATMAID project. This project can
be non-empty or a new one and can be part of the source CATMAID instance or a completely different one. do this
so, use the catmaid_import_data management command:

manage.py catmaid_import_data

You can use the --help switch to get an overview of the available options. Like the exporter, the importer will ask
a user if it needs more information. If no project is specified, users can select an existing one or create a new empty
target project interactively.

Assuming a file called export_pid_1.json is available and a new CATMAID project with ID 1 has been created,
the following command will start the import:

manage.py catmaid_import_data --source export_pid_1.json --target 1

By default, the importer tries to map users referenced in the input data to existing users. If this is not wanted, the
option --map-users false has to be used.

The importer looks at the user_id, editor_id and reviewer_id fields of imported objects, if available. CAT-
MAID needs to know what to do with this information. Besides mapping users, CATMAID can also override all import
data user information with a single user. Setting --map-users false and either selecting a user interactively oder
with the help of the --user <id> option, will accomplish this.

If users are mapped and a username does not exist, the import is aborted—unless the --create-unknown-users
option is provided. This will create new inactive user accounts with the provided usernames that are referenced from
the new imported objects. The allows to not require full user profiles to be part of exported data.

By default, the importer won’t use the IDs of spatial data provided from the import source and instead will create new
database entries. This default is generally useful and doesn’t risk replacing existing data. All relations between objects
are kept. If however needed, the use of the source provided IDs can be enforced by using the --preserve-ids
option.

Semantic data, like annotations and tags however are re-used if already available in the target project. The only
exception to this are neuron and skeleton objects, which are technically semantic objects, but are expected to not be
shared or reused.

Bulk loading large data sets

Importing data using the catmaid_import_data management command works well for thousands of neurons
and connectors. It becomes however very slow and memory intensive to load millions or billions of neurons. On this
scale, loading data direcrly into the database is the best strategy. It requires extra care, because most safe-guards the
API and management commands provides will be bypassed.

Details on the import process are collected on the Bulk loading page.

44 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Importing project and stack information

Image data in CATMAID is referenced by stack mirrors, which belong to a particular stack. Stacks in turn are
organized in projects. The data used by a stack mirror can have one of various types of data sources. A simple and
often used source is a simple folder structure of tiled image data for each stack. To be accessible, a stack mirror’s image
base has to give access to such a folder from the web. Of course, stacks, stack mirrors and projects can be created by
hand, but there is also an importing tool available in Django’s admin interface. It can be found under Custom Views
and is named Import projects and image stacks.

The admin import tool can import project and stack information from various source:

• Other CATMAID instances,

• A general remote API endpoint

• A remote or local JSON file

• A textural JSON definition

• A local file and folder structure

All JSON representaitons that can be imported are of the format that is returned by CATMAID’s /
projects/export API endpoint. This very same format can be used with a managment command,
catmaid_import_projects, on the command line.

The command line option and the file based import are explained in more detail below. The latter expects a certain data
folder layout to work on and als relies on so called project files (a file in a simple YAML format) to identify potential
projects. Its data layout is explained below as well.

How to use the importing tool will be shown in the last section.

Note: Regardless of whether you import image stacks with the help of the importer or add projects, stacks, stack
mirrors, project-stack links and permissions by hand: you need to make the image data accessible through your web-
server. For instance, say you are running CATMAID on the URL example.com/catmaid and you are using the
importer and have IMPORTER_DEFAULT_IMAGE_BASE set to https://example.com/catmaid/data and
CATMAID_IMPORT_PATH to /home/catmaid/data/. The webserver would now need to map /catmaid/
data to /home/catmaid/data/. For Nginx this would look like that:

location /catmaid/data/ {
alias /home/catmaid/data/;

}

Importing projects and stacks on the command line

The management command catmaid_import_projects can be used to import project from the command line.
It understands the basic /projects/export API endpoint format. A simple example might look like this:

[{
"project": {
"title": "L1 CNS",
"stacks": [{

"title": "L1 CNS",
"dimension": "(28128, 31840, 4841)",
"mirrors": [{

"fileextension": "jpg",
"position": 3,

(continues on next page)

1.1. User Documentation 45

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

"tile_source_type": 4,
"tile_height": 512,
"tile_width": 512,
"title": "Example tiles",
"url": "https://example.com/ssd-tiles/"

}],
"resolution": "(3.8,3.8,50)",
"translation": "(0,0,6050)"

}]
}

}]

This can be provided as a file with its path provided as --input argument to catmaid_import_projects
or through the stdin stream that is piped into it. Additionally, it possible to provide permissions for the imported
projects. This is done through one ore more --permission parameters. Each of them will take an argument in
the form type:name:permission, where type can either be user or group. name is either a username or a
groupname and permission can be can_browse, can_annotate and so forth.

The import can be configured with additional options which are explained when using the --help option.

Project Files

If the importing tool encounters a folder with a file called project.yaml in it, it will look at it as a potential project.
If this file is not available, the folder is ignored. However, if the file is there it gets parsed and if all information is
found the tool is looking for, the project can be imported. So let’s assume we have a project with two stacks having
one image data copy each in folder with the following layout:

project1/
project.yaml
stack1/
stack2/

A project file contains the basic properties of a project and its associated stacks. It is a simple YAML file and could
look like this for the example above:

project:
title: "Wing Disc 1"
stacks:

- title: "Channel 1"
description: "PMT Offset: 10, Laser Power: 0.5, PMT Voltage: 550"
dimension: "(3886,3893,55)"
resolution: "(138.0,138.0,1.0)"
mirrors:
- title: "Channel 2 overlay"
folder: "stack1"
fileextension: "jpg"

- title: "Channel 2"
description: "PMT Offset: 10, Laser Power: 0.7, PMT Voltage: 500"
dimension: "(3886,3893,55)"
resolution: "(138.0,138.0,1.0)"
downsample_factors: ["(1,1,1)", "(2,2,1)", "(4,4,1)"]
mirrors:
- title: Channel 2 image data
folder: "stack2"
fileextension: "jpg"

(continues on next page)

46 Chapter 1. Documentation

http://en.wikipedia.org/wiki/YAML

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

stackgroups:
- title: "Example group"
relation: "has_channel"

- title: "Remote stack"
dimension: "(3886,3893,55)"
resolution: "(138.0,138.0,1.0)"
zoomlevels: 3
downsample_factors: ["(1,1,1)", "(2,2,1)", "(4,4,1)", "(8,8,1)", "(16,16,1)"]
translation: "(10.0, 20.0, 30.0)"
mirrors:
- tile_width: 512
tile_height: 512
tile_source_type: 2
fileextension: "png"
url: "https://my.other.server.net/examplestack/"

stackgroups:
- title: "Example group"
relation: "has_channel"

As can be seen, a project has only two properties: a name and a set of stacks. A stack, however, needs more informa-
tion. In general, there are two ways to specify the data source for a folder: 1. an optional path and a folder, both
together are expected to be relative to the IMPORTER_DEFAULT_IMAGE_BASE settings or 2. a url, which is used
as a stack mirror’s image base.

The first stack in the example above is based on a folder in the same directory as the project file. The folder property
names this image data folder for this stack, relative to the project file. The name of stack is stored in the title field
and metadata (which is shown when a stack is displayed) can be added with the metadata property. A stack also
needs dimensions and resolution information. Dimensions are the stacks X, Y and Z extent in pixel. The
resolution should be in in nanometers per pixel, in X, Y and Z.

In addition to the folder information, the second and third stack above use the downsample_factors field to
declare the number of available “zoom levels”. This is done by providing a list of 3D scale factors, one for each zoom
level available, with 1,1,1 being the unscaled voxel size of the data set. In a classical anisotropic TEM data set, it is
common to zoom out in steps of factors of two in X and Y and keep the visual section thickness the same. Assuming
there are four additional zoom levels besides the original version, this could be expressed as the downsample factors
["(1,1,1)", "(2,2,1)", "(4,4,1)", "(8,8,1)", "(16,16,1)"], scaling X and Y by a factor of
two and Z not at all for each entry of the array.

Of course, any other configuration could be chosen as well. Likewise for isotropic data sets like FIB-SEM, the Z
component in each tuple would be scaled as well. If no downsample_factors are given, CATMAID’s default behavior
is to use as many scale levels as are needed in the above anisotropic downsample factors for the original image width
or height to fit on a single tile. Since different stack mirrors can have different tile sizes, the minimum of those are
used. Without any mirrors, no zoom levels will be assumed.

The example above also specifies the file extension of the image files with the fileextension key. Both fields are
required.

The last stack in the example above doesn’t use a local stack folder, but declares the stack mirror’s image base explic-
itly by using the url setting. Like done for the folder based stacks, a url based stack mirror needs the tile_width,
tile_height and tile_source_type fields. The corresponding stack defines the resolution and
dimension fields.

CATMAID can link stacks to so called stack groups. These are general data structures that relate stacks to each other,
for instance to denote that they represent channels of the same data, orthogonal views or simple overlays. There is
no limit on how many stack groups a stack can be part of. Each stack in a project file can reference stack groups by
title and the type of relation this stack has to this stack group. At the moment, valid relations are channel
and view. All stacks referencing a stack group with the same name will be linked to the same new stack group in the

1.1. User Documentation 47

CATMAID Documentation, Release 2021.12.21

new project. In the example above, a single stack group named “Example group” will be created, having stack 2 and
3 as members—each representing a layer/channel. Stack groups are used by the front-end to open multiple stacks at
once in a more intelligent fashion (e.g. open multi-channel stack groups as layers in the same viewer).

All specified stacks within a project are linked into a single space. By default each stack origin is mapped to the project
space origin (0,0,0). An optional translation can be applied to this mapping: If a stack has a translation field, the
stack is mapped with this offset into project space. Note that this translation is in project space coordinates (physical
space, nanometers). The example above will link the last stack (“Remote stack”) to the project “Wing Disc 1” with an
offset of (10.0, 20.0, 30.0) nanometers. Both other stacks will be mapped to the project space origin.

Also, it wouldn’t confuse the tool if there is more YAML data in the project file than needed. It only uses what is
depicted in the sample above. But please keep in mind to not use the tab character in the whitespace indentation (but
simple spaces) as this isn’t allowed in YAML.

Ontology and classification import

The project files explained in the last section can also be used to import ontologies and classifications. While CAT-
MAID supports arbitrary graphs to represent ontologies and classifications,only tree structures can be imported at the
moment.

The project object supports an optional ontology field, which defines an ontology hierarchy with lists of lists.
An optional classification field can be used to define a list of ontology paths that get instantiated based on
the provided ontology. Classification fields require that an ontology is defined and can be used on project level,
stack level and the stackgroup level. Consider this example:

project:
title: "test"
ontology:

- class: 'Metazoa'
children:
- relation: 'has_a'

class: 'Deuterostomia'
- relation: 'has_a'

class: 'Protostomia'
children:
- relation: 'has_a'
class: 'Lophotrochozoa'
children:
- relation: 'has_a'
class: 'Nematostella'
children:
- relation: 'has_a'
class: 'Lineus longissimus'

stackgroups:
- title: 'Test group'

classification:
- ['Metazoa', 'Protostomia', 'Lophotrochozoa', 'Nematostella', 'Lineus

→˓longissimus']
stacks:

- title: "Channel 1"
description: "PMT Offset: 10, Laser Power: 0.5, PMT Voltage: 550"
dimension: "(1024,1024,800)"
resolution: "(2.0,2.0,1.0)"
zoomlevels: 1
translation: "(10.0, 20.0, 30.0)"
classification:

(continues on next page)

48 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

- ['Metazoa', 'Deuterostomia']
mirrors:

- title: Channel 1
url: "https://example.org/data/imagestack/"
fileextension: "jpg"

- title: "Channel 1"
description: "PMT Offset: 10, Laser Power: 0.5, PMT Voltage: 550"
dimension: "(1024,1024,800)"
resolution: "(2.0,2.0,1.0)"
zoomlevels: 1
translation: "(10.0, 20.0, 30.0)"
mirrors:
- title: Channel 1

url: "https://example.org/data/imagestack-sample-108/"
fileextension: "jpg"

stackgroups:
- title: "Test group"
relation: "has_channel"

- title: "Channel 2"
description: "PMT Offset: 10, Laser Power: 0.5, PMT Voltage: 550"
dimension: "(1024,1024,800)"
resolution: "(2.0,2.0,1.0)"
zoomlevels: 1
mirrors:
- title: Channel 2
folder: "Sample108_FIB_catmaid copy"
fileextension: "jpg"

stackgroups:
- title: "Test group"
relation: "has_channel"

The project level ontology definition represent an ontology with the root node “Metazoa” which has two children:
“Deuterostomia” and “Protostomia”, connected through a “has_a” relation. While the first child is a leaf node and has
no children, the second child has a child node as well (and so on). It is possible to have multiple roots (i.e. separate
ontology graphs) and multiple children, both are lists.

Individual stacks and stackgroups are then allowed to instantiate a certain path of the ontology and be linked to the
leaf node of the path. They do this by supporting a classification field. The example creates two classification
paths and links one leaf node to the stack group and one to an individual stack.

Currently, the importer expects that those two classes are only related on the ontology level a single time. This allows
for an easier file syntax with a simple list. An import will fail if the project defined ontology doesn’t contain a class
used in a classification.

File and Folder Layout

The importing tool expects a certain file any folder layout to work with. It assumes that there is one data folder
per CATMAID instance that is accessible from the outside world and is somehow referred to within a stack mirror’s
image base (if referring to folders in the project file). As an example, let’s say a link named data has been placed in
CATMAID’s top-level directory. This link links to your actual data storage and has a layout like the following:

data/
project1/
project2/
project3/

(continues on next page)

1.1. User Documentation 49

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

tests/
project4/

Each project folder has contents similar to the example in the previous section. Assuming your webserver has been
configured to make this folder accessible, it should be possible to have the browser access it under:

https://<CATMAID-URL>/data

A typical URL to a tile of a stack could then look like this (if you use jpeg as the file extension):

https://<CATMAID-URL>/data/project1/stack1/0/0_0_0.jpeg

The importer uses this data directory or a folder below it as working directory. In this folder it treats every sub-
directory as a potential project directory and tests if it contains a project file named project.yaml. If this file is
found a folder remains potential project. A folder is ignored, though, when the project file is not available.

Also note, that such a data folder needs to be made accessible by the webserver. Otherwise, the CATMAID front-end
won’t be able to retrieve and show image data. The “Note” box at the beginning of this section has more details on
this.

Importing skeletons through the API

The CATMAID API supports raw skeleton data import using SWC files. As can be seen under /apis, the
{project_id}/skeletons/import URL can be used to import skeletons that are repesented as SWC. The
script scripts/remote/upload_swc.py can be of help here. It is also possible to just use cURL for this:

curl --basic -u fly -X POST --form file=@<file-name> \
<catmaid_url>/<project_id>/skeletons/import \
--header "X-Authorization: Token <api-token>"

Using the importer admin tool

The import offers to import from local project files, remote CATMAID instances or remote project files/exports.

To use the importer with project files, you have to adjust your CATMAID settings file to make your data path known
to CATMAID. This can be done with the CATMAID_IMPORT_PATH settings. Sticking to the examples from before,
this setting might be:

CATMAID_IMPORT_PATH = <CATMAID-PATH>/data

For imported stack mirrors that don’t provide an image URL by themselves, CATMAID can construct an image
base from the the IMPORTER_DEFAULT_IMAGE_BASE setting plus the imported project and stack names. For the
example above, this variable could be set to:

IMPORTER_DEFAULT_IMAGE_BASE = https://<CATMAID-URL>/data

With this in place, the importer can be used through Django’s admin interface. It is listed as Image data importer under
Custom Views. The first step is to give the importer more detail about which folders to look in for potential projects:

50 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

With these settings, you can narrow down the set of folders looked at. The relative path setting can be used
to specify a sub-directory below the import path. When doing so, the working directory will be changed to
CATMAID_IMPORT_PATH plus the relative path. If left empty, just the CATMAID_IMPORT_PATH setting will
be used. Additionally, you can filter folders in tho working directory by specifying a filter term, which supports Unix
shell-style wildcards. The next setting lets you decide how to deal with already existing (known) projects and what
is considered known in the first place. A project is known can be declared to be known if the name of an imported
project matches the name of an already existing one. Or, it can be considered known if if there is a project that is
linked to the very same stacks like the project to be imported. A stack in turn is known if there is already a stack
with the same mirror image base. The last setting on this dialog is the Base URL. By default it is set to the value
of IMPORTER_DEFAULT_IMAGE_BASE (if available). This setting plus the relative path stay the same for every
project to be imported in this run. It is used if imported stacks don’t provide a URL explicitly. To continue, click on
the next step button.

The importer will tell you if it doesn’t find any projects based on the settings of the first step. However, if it does find
potential projects, it allows you to unselect projects that shouldn’t get imported and to add more details:

1.1. User Documentation 51

CATMAID Documentation, Release 2021.12.21

Besides deciding which projects to actually import, you can also add tags which will be attached to the new projects.
If the tile size differs from the standard, it can be adjusted here. If you want your projects to be accessible publicly,
you can mark the corresponding check-box.

When the Check classification links option is selected, the importer tries to suggest existing classification graphs to
be linked to the new project(s). These suggestions are optional and based on the tags you entered before. If existing
projects have the same tags or a super set of it, their linked classification graphs will be suggested.

The last adjustment to make are permissions. With the help of a list box you can select one or more group/permission
combinations that the new projects will be assigned. If all is how you want it, you can proceed to the next dialog.

The third and last step is a confirmation where all the information is shown the importer found about the projects and
stacks to be imported. To change things in this import, simply go back to a step before, using the buttons at the bottom
of the page. If all the project and stack properties as well as the tags and permissions are correct, the actual import can
start.

In the end the importer will tell you which projects have been imported and, if there were problems, which ones not.

52 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

1.1.14 Using Data Views

Introduction

Providing a good entry point to the different data sets served by a CATMAID instance is important. Depending on
number and type of the projects and stacks, different views on this data might help you with keeping an overview or
to spot the data set you are interested in. CATMAID’s data views try to help you with that. With them you can define
and tweak the front page of CATMAID.

In fact, you can have as many front pages as you want. The ones available are accessible through a menu, activated
by hovering the Home link in the menu. The one used when the CATMAID site is opened, differs only in one aspect
from the others: it is marked as default. All data views are configured instances of a particular data view type. They
define the basic structure of the page, but allow to pass parameters to adjust some parts.

Currently, CATMAID comes with two pre-defined data views: Project list and Project table with images. The latter is
used as the default, i.e. it is shown when CATMAID is loaded. Both views have different view types. They are Project
list and Project table. There is also two more data view types that are not used by the pre-defined views: Simple project
list. It allows the display of a project list used before the advent of data views. Then there is also the Project tag table
which allows the construction of a table based on tags. The details are described below.

Different use cases might require different data view types. How to extend CATMAID and create own data view types
is explained in section Creating New Data View Types.

Configuring Data Views

To add new or modify the present views, the Django admin interface is used. By default, you’ll find it at
http://<CATMAID-URL>/admin or a similar URL. It is not necessarily the case, that every CATMAID user can ad-
minister data views. This depends on the permissions granted and in case you can’t log-in or don’t see the relevant
parts within the admin interface, talk to your CATMAID administrator.

In the admin interface you will be presented different configuration options for CATMAID. Amongst them, the data
view management:

Depending on your CATMAID setup, the admin interface might look a bit different. Opening the data view configu-
ration will get you a list of all available data views. By default this looks like this:

1.1. User Documentation 53

CATMAID Documentation, Release 2021.12.21

Next to the name and the type of each view, the position is visible (1). With the help of this number you can define the
order of the views in the drop down menu and within this admin view list. The positioning can be changed right there
in the list. If you edited the position numbers, click Save (3) to, well, save your changes. Also indicated is whether
a view is default or not (2). If you want to change this setting, please open up the configuration of one particular
data view (see below). Creating a new data view can be accomplished by the button in the upper right (4). The same
interface is used for adding new views and editing existing ones. Editing the default view looks like this:

There are quite some configuration options here: One can easily adjust the title (1), mark a view as the default (4) or
define its position (5). Setting a data view as the default view, will mark all other views as non-default at the same
time.

If the data view type is changed (2), the help text under the configuration box (3) is updated accordingly. Every data
view type has its own set of options and the help text will tell you about those. In the case of the figure above, a
Tabular project view type is used. A detailed description of the options available can be found below. The format
used to define them is called JSON and in order to only use the default options you have to set the configuration to
{}. If you enter text that cannot be parsed as JSON you will get an error when saving. Saving invalid text is thereby
prevented. Typos in option names, however, will not be identified.

54 Chapter 1. Documentation

http://en.wikipedia.org/wiki/JSON

CATMAID Documentation, Release 2021.12.21

If wanted, a comment can be added as well. This will be displayed to the right of the data view title in the menu.

Different Data View Types

Like said above, a data view type defines the general structure of a concrete data view, but gives some configuration
options. For instance, most of the types offer to show sample images. If an option is not present in a data views
configuration, its default value is used.

Options in help texts usually have the following notation:

"<name>":[option1|option2]

An option name has to be quoted and the value has to be delimited by a colon. However, also values might need
quoting if they are strings other than true or false (and no numbers). Alternative values are separated by a logical
or/pipe symbol (|) and only one of them can be used. Let’s have a look at the sort option as an example: All data
view types, except the Simple Project List type, support the option

"sort":[true|false].

When set to true (default), all projects are sorted naturally and when set to false they are displayed like they come
from the database. If we don’t want to have the projects sorted, we could use this configuration:

{"sort":false}

When multiple options are used, each option is separated by a comma from another one – within the same pair of curly
braces:

{"name1":opt1, "name2:opt2, ...}

Like already mentioned, there are options that are supported by all the different data view types. The only exception
to this is the Simple Project List type, which doesn’t support such general options. All the other types respect the
following general options:

Name Options Default
sort true, false true
filter_tags A list of tags, e.g. ["TagA", "TagB"] []
catalogue_link true, false true

With the help of the sort option one can make sure the list of projects a data view deals with is sorted (or that it is not).
The filter_tags option allows to define a list of tags that have to be assigned to all projects looked at. If neuron
annotations are used in a project, a so called neuron catalogue can be displayed. By default, a link to this overview
is displayed for every project that has such annotations. This can be disabled, by setting the catalogue_link
option to false. If a data view should get an unsorted list of projects that are tagged with Test as well as CNS and
catalogue links should not be displayed, the configuration would look like:

{"sort":false, "filter_tags":["Test", "CNS"], "catalogue_link":false}

The remainder of this section will briefly discuss the different data view types available.

1.1. User Documentation 55

CATMAID Documentation, Release 2021.12.21

Simple Project List

All data views except this one are processed or the server-side. This project list is done with the help of JavaScript
in the browser of a user. It supports an interactive live filters for both projects and stacks/stack groups, which can
optionally pre-set with the data view configuration. The filter option decides if the filter input boxes are visible.

Name Options Default
filter true, false true
projectFilterTerm Plain string or regular expression ""
stackFilterTerm Plain string or regular expression ""
header true, false true
message String def. message
with_stacks true, false true
with_stackgroups true, false true
show_empty_projects true, false false
show_controls true, false false
favorites_first true, false true
sample_images true, false false
sample_mirror_index position of mirror to use 0
sample_slice slice index, "first", "center", "last" "center"
initial_location 3-Element array, e.g. [10, 10, 10] ""
initial_zoom zoom level index ""
initial_tool Can be "tracingtool ""
initial_layout A layout out string ""

An example:

56 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Project List

The appearance of Project List is very similar to the one of Simple Project List. Currently, it doesn’t support live
filtering of projects, though. When a project has no stacks, it won’t be visible with this view type. It is processed
server-side and offers some configuration options:

Name Options Default
sort true, false true
filter_tags A list of tags, e.g. ["TagA", "TagB"] []
catalogue_link true, false true
sample_images true, false false
sample_mirror_index position of mirror to use 0
sample_stack stack index, "first", "last" 0
sample_slice slice index, "first", "center", "last" "center"
sample_width width in pixel, e.g. 50 or 75 orig. width
sample_height height in pixel, e.g. 50 or 75 orig. height
show_mirrors true, false false

Please refer to the introduction to this section for an explanation of the sort, filter_tags and
catalogue_link options. The sample_images option defines whether there should be a sample image dis-
played to the left of each project entry. If an image is displayed, the sample_stack option defines from which
stack of the current project the image should be taken. The stack index value of it represents a single inte-
ger (e.g. 0). If this index is out of bounds, no image is displayed. With the option sample_slice one defines
which slice of the sample stack should be used as sample image. Again, slice index is an integer number
and no image is shown if this is not within bounds. The option values "first" and "last" refer to the first
and last slice of the stack, "center' refers to the middle slice is the stack. To make the sample images appear
smaller or larger, the sample_width and sample_height option can be used. The assigned number is treated
as pixel width and height, respectively. If a sample image is used, a particular mirror can be selected using the
sample_mirror_index field. The mirror with the selected position will be used.

So if you were to configure a Project List data view with a sample image which should be the middle slice of every
last stack in a project, you would do this:

{"sample_images":true, "sample_stack":"last", "sample_slice":"center"}

The result could look like the following:

1.1. User Documentation 57

CATMAID Documentation, Release 2021.12.21

Project table

While the Project List presents all the stacks of a project as links below each other, the Project table will list all stacks
in the same row as the project name. Especially when there are many projects, this helps to get an overview of all
available image data. It allows the display of images as well, but in a different way than the Project List type. Instead
of providing one image per project, this data view type will show one image per stack – replacing the stack name. Like
the Project List type, it won’t show a project, if it has no stacks associated. The following options are supported:

Name Options Default
sort true, false true
filter_tags A list of tags, e.g. ["TagA", "TagB"] []
catalogue_link true, false true
sample_images true, false false
sample_mirror_index position of mirror to use 0
sample_slice slice index, "first", "center", "last" "center"
sample_width width in pixel, e.g. 50 or 75 orig. width
sample_height height in pixel, e.g. 50 or 75 orig. height
show_mirrors true, false false

Have a look to this section’s introduction for an explanation of the sort, filter_tags and catalogue_link

58 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

options. If images should be displayed, the sample_images option should be set to true. Since there is one
image per stack, an option like sample_stack in the Project list type, isn’t needed. However, with the help of the
sample_slice option a slice can be selected. Again, this can be done with an integer index or one of the string
arguments (mind the quotes!). If the numeric index is out of range, no image will be displayed. Like in the Project
List view type, the option values "first", "center" and "last" refer to the first, middle and last slice of each
stack. To adjust the (pixel) size of sample image, the options sample_width and sample_height can be used.
If only one of the two is used, the images are scaled proportionally. If a sample image is used, a particular mirror can
be selected using the sample_mirror_index field. The mirror with the selected position will be used.

If you wanted to display a text-only table, you would actually not need to define anything, but {} (because of the
defaults) to get something like:

However, to get an image table with the center slice of each stack where every sample image has a width of 100px,
you would need to define

{"sample_images":true, "sample_slice":"center", "sample_width":100}

and you would get for example this:

Project tag table

In CATMAID, projects and stacks can be tagged. This can be done through the admin interface or the tagging tool
(see Tagging). Based on a Project tag table data view type, a data view can create a table where each cell is associated
with a row tag and column tag. Which tag is linked to which row and which tag is linked to which columns can be
configured.

To understand the purpose of this data view type, let’s look at an example: You have light microscopy image stacks of
different tissues. For every tissue there are image stacks for multiple proteins you are interested in. To have the tissue
and the protein associated with CATMAID projects, one could just use tags: Every project would be tagged with a
tissue name and protein name. To organize the data with the help of the Project tag table data view type, one could
then assign the tissue tags to the columns and the protein tags to the rows of the resulting table. Each cell of the table
refers then to one column (tissue) tag and one row (protein) tag. Each project will appear in a table cell that refers to
tags the project itself is tagged with.

However, there are more options than the tags themselves that can be configured:

1.1. User Documentation 59

CATMAID Documentation, Release 2021.12.21

Name Options Default
sort true, false true
filter_tags A list of tags, e.g. ["TagA", "TagB"] []
catalogue_link true, false true
row_tags A list of tags, e.g. ["TagA", "TagB"] []
col_tags A list of tags, e.g. ["TagA", "TagB"] []
linked_stacks stack index, "first", "last", "all" "all"
force_stack_list true, false false
highlight_tags A list of tags, e.g. ["TagA", "TagB"] []
sample_images true, false false
sample_mirror_index position of mirror to use 0
sample_slice slice index, "first", "center", "last" "center"
sample_width width in pixel, e.g. 50 or 75 orig. width
sample_height height in pixel, e.g. 50 or 75 orig. height

Have a look at this section’s introduction for an explanation of the sort, filter_tags and catalogue_link
options. The tags to use for the rows and columns can be set with the row_tags and the col_tags keywords. To
control which stacks of a project appear in a table cell, the linked_stacks and the force_stack_list option
can be used: They define if a list of stacks is displayed per project (like in the Project list type) and which stacks should
make it into this list. By default, a complete stack list is displayed for each project. In some situations, however, it is
not preferable to list all stacks associated with a project and so you can limit this to either the first stack, the last
or one of a specific index. Is there only one stack (selected or at all), then the link to open it is rendered solely as the
project title and no list is displayed. If this is not wanted, the force_stack_list option can be set to true to get a
list with one entry.

It may be desirable to highlight a group of projects which have the same tags. This can be achieved by providing
highlight_tags. All projects tagged with at least one of those tags will be displayed in bold.

Like with the other data types, one can opt for showing images instead of stack names. To do so, employ the
sample_images option. These images will then form links to the actual stack display. With the help of the
sample_slice keyword, the displayed slice can be selected. Again, one can choose the "first", "last" or
"center" slice of the stack. In case the default size of these sample is too big or too small, the sample_width
and sample_height options can be used. It takes a numerical pixel value and scales the result images accordingly.
If a sample image is used, a particular mirror can be selected using the sample_mirror_index field. The mirror
with the selected position will be used.

As an example, consider the situation described above: We have image stacks of several tissues and with multiple
protein markers. The imaged tissues are CNS and salivary gland. For both of them there are stacks labeled with
markers called Smo and Ptc. The stacks have been labeled accordingly. Also, we only want to consider images tagged
as “Valid”. Additionally, we don’t went to see all the stacks, but only the project name that links to the last stack of
each project. A configuration might look like this:

{"filter_tags":["Valid"], "row_tags":["Smo", "Ptc"],
"col_tags":["CNS", "Salivary Gland"], "linked_stacks":"last" }

With this, the rendered result could look like the following:

60 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

1.1.15 Similar Software Tools

Interactive skeleton tracing and segmentation

• TrakEM2

• Knossos

• NeuTu

• Reconstruct

• Raveler (*)

• Viking (*)

• Program Elegance (*)

• SSECRETT and Neurotrace (*)

• NeuroStruct (*)

• ESPina (*)

These are all desktop-based tools. (*) are not directly available for download.

Web-based image viewer

• Mouse Brain Architecture Viewer

• Biological Image Viewer Kitware

• iConnectome

• Virtual Fly Brain

• WebImage Browser

• IIPIImage

• Djatoka

• OpenLayers

• JCB Data Viewer

iPad Apps

• WholeSlide

Segmentation Software

• Ilastik (and preview integration with CATMAID)

• Fiji

1.1. User Documentation 61

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0038011
http://www.knossostool.org/
https://github.com/janelia-flyem/NeuTu
http://synapses.clm.utexas.edu/tools/reconstruct/reconstruct.stm
http://janelia.org/team-project/fly-em
http://prometheus.med.utah.edu/~marclab/marclab_2011_Connectomes_index.html
http://worms.aecom.yu.edu/pages/Reconstruction%20Software.html
http://gvi.seas.harvard.edu/paper/ssecrett-and-neurotrace-interactive-visualization-and-analysis-tools-largescale-neuroscience-d
http://www.neurostruct.org/index.html
http://cajalbbp.cesvima.upm.es/espina
http://mouse.brainarchitecture.org/seriesbrowser/
http://www.cmake.org/Wiki/index.php?title=IMServer:Demos&oldid=39560
http://www.mouseconnectome.org/iConnectome/
http://flybrain.inf.ed.ac.uk/
http://openccdb.org/index.shtm
http://iipimage.sourceforge.net/documentation/iipmooviewer/
http://sourceforge.net/apps/mediawiki/djatoka/index.php?title=Main_Page
http://openlayers.org/
http://jcb-dataviewer.rupress.org/
http://wholeslide.com/
http://ilastik.org/
http://www.youtube.com/watch?v=TKA5g1DTikA&feature=autoplay&list=UU2Z3En46IwfxbRXhI3OsDaQ&lf=plcp&playnext=1
http://fiji.sc/

CATMAID Documentation, Release 2021.12.21

1.2 Administrator Documentation

Note: These instructions describe installing CATMAID from source for long-term use. If you want to quickly try
CATMAID for evaluation or demonstration purposes, consider using the docker image.

1.2.1 Basic Installation Instructions

These installation instructions have been tested on the most recent stable release of Ubuntu (18.04 bionic), so may need
some minor changes for other Debian-based distributions. For installation on Mac OS X, first read these additional
instructions.

Introduction

The most fundamental dependencies of CATMAID are:

1. PostgreSQL 12 and PostGIS 2.5

2. CPython 3.6, 3.7, 3.8, 3.9 or PyPy3.7 (CPython 3.8 is recommended)

To get the required PostgreSQL version for Debian-based systems, such as Ubuntu, you have to add the officical
Postgres repository as an extra Apt repository (if you haven’t done so already):

PG_URL="http://apt.postgresql.org/pub/repos/apt/"
APT_LINE="deb ${PG_URL} $(lsb_release -cs)-pgdg main"
echo "${APT_LINE}" | sudo tee "/etc/apt/sources.list.d/pgdg.list"
sudo apt-get install wget ca-certificates
PG_KEY_URL="https://www.postgresql.org/media/keys/ACCC4CF8.asc"
wget --quiet -O - ${PG_KEY_URL} | sudo apt-key add -
sudo apt-get update

While other Python versions are supported, we recommend the use of Python 3.8. To be able to install it on Ubuntu
16.04 and earlier, the following needs to be done:

sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt-get update

The Django version we use also requires a GDAL version of at least 2.0. The installed version can be checked using
gdalinfo --version. Should version 2 or newer not be available on your system, use the following PPA:

sudo add-apt-repository ppa:ubuntugis/ppa
sudo apt-get update

And then you can install these dependencies with:

sudo apt-get install python3.8 postgresql-12 postgresql-12-postgis-2.5 gdal-bin

CATMAID is based on the Django web framework. If you just wish to work on developing CATMAID, you can
use Django’s built-in lightweight development server. However, for production you will need to configure your web-
server to talk to the CATMAID web application using WSGI. We have successfully tested using either Apache with
mod_wsgi, or Nginx with gevent, gunicorn or uSWGI. Particularly Nginx with uWSGI have been tested extensively.
Setting up one of these web servers is described in later sections.

62 Chapter 1. Documentation

https://wiki.postgresql.org/wiki/Apt
https://www.djangoproject.com/

CATMAID Documentation, Release 2021.12.21

1. Clone the repository

The git repository is hosted at https://github.com/catmaid/CATMAID - clone this repository somewhere outside your
web root, e.g. in /home/alice, so that the source code is in /home/alice/catmaid:

git clone https://github.com/catmaid/CATMAID.git catmaid

2. Install required Python packages

We recommend the use of Python 3.8 or newer for production use. With a few limitations PyPy3 can be used as well
(no cropping, no back-end plotting, no synapse clustering, no ontology clustering).

We strongly recommend that you install all Python package dependencies into a virtualenv, so that they are isolated
from the system-wide installed packages and can be upgraded easily. Some of these Python packages depend on
system-wide libraries that you will need to install in advance, however. You can do this with the following command
on Ubuntu (you may need additional PPAs, such as ubuntugis and postgresql):

sudo apt-get install postgresql-12 postgresql-12-postgis-2.5 gcc gfortran \
git python3.8-dev postgresql-common libpq-dev \
libhdf5-serial-dev libboost-dev virtualenvwrapper \
libboost-python-dev libxml2-dev libxslt1-dev \
libjpeg-dev libtiff-dev libblas-dev liblapack-dev \
pkg-config binutils libproj-dev gdal-bin

Virtualenv Wrapper needs to source your environment. Start a new terminal or if you are using the bash:

source ~/.bashrc

Please test if virtualenvwrapper is set up correctly, by executing:

mkvirtualenv --version

If it gives you a version, everything is fine. Otherwise, e.g. if the command mkvirtualenv is not found, add the
following line to your ~/.bashrc file and call source ~/.bashrc again:

source /etc/bash_completion.d/virtualenvwrapper

To create a new virtualenv for CATMAID’s Python dependencies, you can do:

mkvirtualenv --no-site-packages -p /usr/bin/python3.8 catmaid

That will create a virtualenv in ~/.virtualenvs/catmaid/, and while your virtualenv is activated, Python
libraries will be imported from (and installed to) there. After creating the virtualenv as above, it will be activated for
you, but in new shells, for example, you will need to activate it by running:

workon catmaid

Note: Many distributions ship with an outdated version of Pip. This is the tool we use to install Python packages
within the virtualenv, so let’s update it first:

python -m pip install -U pip

1.2. Administrator Documentation 63

https://github.com/catmaid/CATMAID

CATMAID Documentation, Release 2021.12.21

Note: It is possible to use PyPy as Python implementation, which can improve performance of back-end heavy end-
points. Most functionality is available, except for the following: Ontology clustering, Cropping, Synapse clustering,
HDF 5 tiles and User analytics. To use PyPy, a new virtualenv using the PyPy executable has to be created:

mkvirtualenv --no-site-packages -p /usr/bin/pypy catmaid

Note: If you are using Python 3.6 or newer on Ubuntu 14.04 and 16.04, never uninstall Python 3.5, because it might
break some parts of the system.

Install all of the required Python packages with:

cd /home/alice/catmaid/django
pip install -r requirements.txt

If that worked correctly, then the second-last line of output will begin Successfully installed, and list the
Python packages that have just been installed.

If you set up a production environment, please also install the requirements-production.txt file:

pip install -r requirements-production.txt

This will rebuild some dependencies from source. If asked whether existing packages schould be replaced by the new
version, anwer with yes.

3. Install and configure PostgreSQL

If you are comfortable with creating a new PostgreSQL database for CATMAID, then you should do that and continue
to the next section. If you decide to do so, please make sure to also install the postgis extension and the pg_trgm
extension for the new CATMAID database. The advice here is a suggested approach for people who are unsure what
to do.

If you are uncomfortable with using the PostgreSQL interactive terminal from the command line, you may wish to
install an alternative interface, such as pgAdmin (sudo apt-get install pgadmin3) or phpPgAdmin (sudo
apt-get install phppgadmin).

We suppose for the examples below that you want to create a database called catmaid and a database user called
catmaid_user. Firstly, we need to reconfigure PostgreSQL to allow password-based authentication for that user to
that database. To do that, edit the file /etc/postgresql/11/main/pg_hba.conf and add this line as the first
rule in that file:

local catmaid catmaid_user md5

After saving that file, you need to restart PostgreSQL with:

sudo service postgresql reload

You can generate the commands for creating the database and database user with the scripts/createuser.sh
helper script. This takes the database name, the database user and the user’s password as arguments and outputs some
commands that can be interpreted by the PostgreSQL shell. These can be piped directly to psql, so you could create
the database and the user with, for example:

scripts/createuser.sh catmaid catmaid_user p4ssw0rd | sudo -u postgres psql

64 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Besides creating the database and the database user, it will also enable a required Postgres extension, called postgis.
You should now be able to access the database and see that it is currently empty except for PostGIS relations, e.g.:

psql -U catmaid_user catmaid
Password:
psql (11.3)
Type "help" for help.

catmaid=> \d
List of relations

Schema | Name | Type | Owner
--------+-------------------+-------+----------
public | geography_columns | view | postgres
public | geometry_columns | view | postgres
public | raster_columns | view | postgres
public | raster_overviews | view | postgres
public | spatial_ref_sys | table | postgres

4. Create the Django settings files

Now you should change into /home/alice/catmaid/django/ and run:

cp configuration.py.example configuration.py

You should now edit configuration.py and fill in all the details requested. Then you should run:

./create_configuration.py

This will output some suggested Nginx and Apache configuration in the terminal, and generate the files django.
wsgi and settings.py in /home/alice/catmaid/django/projects/mysite. An explanation of all
possible settings in the settings.py file can be found here.

5. Create the database tables

The commands in the following sections are all based on the Django site’s admin script manage.py, which would
be in /home/alice/catmaid/django/projects, so these instructions assume that you’ve changed into that
directory:

cd /home/alice/catmaid/django/projects

Now create all required tables and bring the database schema up to date for applications that mange changes to their
tables with South:

./manage.py migrate

1.2. Administrator Documentation 65

CATMAID Documentation, Release 2021.12.21

6. Prepare the static files

The static files (mostly Javascript, CSS and image files) that CATMAID requires need to be collected together into
/home/alice/catmaid/django/static before they will be available. To do this, you need to run:

./manage.py collectstatic -l

(The -l means to create symbolic links to the original location of the files rather than copy them.)

7. Create an administrative user

In order to be able to log in to the CATMAID admin interface, you will need to create a “superuser” account to log in
with. You can do this with:

./manage.py createsuperuser

8. Optionally add some example projects

If you want to have some example projects to try in your new CATMAID instance, you can create a couple with the
following command:

./manage.py catmaid_insert_example_projects --user=1

(The superuser you just created should have the user ID 1.)

9. Try running the Django development server

You can run the Django development server with:

./manage.py runserver

You should then be able to visit your instance of catmaid at http://localhost:8000. Note though that in its default
configuration CATMAID will prevent static files from being served with the runserver command and while the
website should load it may not look like expected. To temporarily allow this to test without enabling debug mode, set
SERVE_STATIC = True in settings.py. For a production setup, the webserver should take care of serving
static files.

10. Setting up a production webserver

You have various options for setting up CATMAID with a production webserver - you can choose from (at least) the
following two:

1. Nginx and uWSGI (or alternatively with Gevent or Gunicorn)

2. Apache and mod_wsgi, in which case see apache

We prefer to use Nginx because of a more straight-forward configuration, smaller memory footprint and better per-
formance with available WSGI servers. In production setups we made good experience with uWSGI running behind
Nginx, which is described in more detail in the Nginx and uWSGI section.

Note if the domain you are serving your image data from is different from where CATMAID is running, CORS headers
have to be sent by the image server or some aspects of the web front-end won’t work as expected. For more details,

66 Chapter 1. Documentation

http://localhost:8000
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

CATMAID Documentation, Release 2021.12.21

have a look here. The same is true for CATMAID back-ends that should be accessed by clients originating not from
the same domain. Check the CORS setup section for more details.

In general you want to fine-tune your setup to improve performance. Please have a look at our collection of advice
for the various infrastructure parts (e.g. webserver, database, file system). This can really make a difference. An
explanation of all possible settings in the settings.py file can be found here.

11. Using the admin interface

You should be able to login to the CATMAID admin interface and complete administration tasks by adding /admin/
after the root URL of your CATMAID instance. For example, with the development server, this would be:

http://localhost:8000/admin/

. . . or, to use the variables used in the configuration.py (see step 4), the URL would be:

http://<catmaid_servername>/<catmaid_subdirectory>/admin/

12. Creating tiles for new CATMAID stacks

You can generate the image tiles for a stack with the scripts/tiles/tile_stack script or by exporting from
TrakEM2 with its “Export > Flat Images” option and selecting the “Export for web” checkbox. Make the folder with
the image pyramid web-accessible and use the URL as image_base URL for your stack.

13. Making tools visible

CATMAID offers a growing set of tools. To not overload the user-interface, all tools which go beyond navigation are
hidden by default. Which tools are visible is stored a user profile for each user. You can adjust these settings at the
bottom of the page while editing a user in the admin interface.

1.2.2 Configuration options

A CATMAID instance an be configured mainly through the settings.py file, which is located in the django/
projects/mysite directory. Along with settings_base.py (which is not supposed to be edited) the instance
configuration is defined. Settings defined in settings_base.py can be overridden in settings.py. Below is
an explanation of all available settings.

CELERY_WORKER_CONCURRENCY Controls how many asyncronous Celery workers are allowed to run. This con-
trols how many asyncronous tasks can be processed in parallel.

NODE_LIST_MAXIMUM_COUNT The maximum number of nodes that should be retrieved for a bounding box query
as it is used to render tracing data. If set to None, no limit will be applied which can be slighly faster if node
limiting isn’t necessary in most cases.

NODE_PROVIDERS This variable takes a list of node provider names, which are iterated during a node query as long
as no result data is found. The next provider, if any, is only used if the current node provider either doesn’t
match the request or decides it can’t provide a useful answer. An entry can either by a single node provider
name (e.g. “postgis2d”) or a tuple (name, options) to pass in additional options for a node provider. Possible
node provider names are: postgis2d, postgis2dblurry, postgis3d ans postgis3dblurry. In addition to these, cache
table can be configured, which allows the use of the following node proviers: cached_json, cached_json_text,
cached_msgpack.

1.2. Administrator Documentation 67

CATMAID Documentation, Release 2021.12.21

CREATE_DEFAULT_DATAVIEWS This setting specifies whether or not two default data views will be created dur-
ing the initial migration of the database and is True by default. It is typically only useful if the DVID or
JaneliaRender middleware are in use and doesn’t have any effect after the initial migration.

MAX_PARALLEL_ASYNC_WORKERS Control how many co-processes can be spawned from an async (Cel-
ery) worker. This means if MAX_PARALLEL_ASYNC_WORKERS is set to 3 and assuming
CELERY_WORKER_CONCURRENCY is set to 2, asyncronous procerssing in CATMAID can be expected to
use a maximum f 6 processes.

DATA_UPLOAD_MAX_MEMORY_SIZE This option controls the maximum allowed requests size that the client ap-
plication is allowed to send in bytes. By default this is set to 10 MB. If a requests exceeds this limit, error code
400 is returned.

REQUIRE_EXTRA_TOKEN_PERMISSIONS To write to CATMAID through its API using an API token, users need
to have a dedicated “API write” permission, called “Can annotate project using API token” in the admin UI. To
allow users with regular annotate permission to write to the backend using the API, this variable can be set to
False. The default value is True.

SPATIAL_UPDATE_NOTIFICATIONS If enabled, each spatial update (e.g placing, updating or deleting treenodes,
connectors, connector links) will trigger a PostgreSQL event named “catmaid.spatial-update”. This allows cache
update workers to update caches quickly after a change. Disabled by default.

CLIENT_SETTINGS Can be a JSON string or dictionary that keeps default values for the whole instance for the
client settings. Keys of the dictionary are the client-settings values, e.g. “neuron-name-service”. The values are
the settings values in the format the front-end expects. For instance, to show by default all annotations that are
labeled with “neuron name” as textual representation of neurons, this line could be used:

CLIENT_SETTINGS = ‘{“neuron-name-service”: {“component_list”: [{“id”: “skeletonid”, “name”: “Skele-
ton ID”}, {“id”: “neuronname”, “name”: “Neuron name”}, {“id”: “all-meta”, “name”: “All annotations anno-
tated with "neuron name"”, “option”: “neuron name”}]}}’

By default, no settings are set and this value is None.

FORCE_CLIENT_SETTING By default, existing client settings won’t be replaced if they exist already. To force a
replace, set this variable to True.

CMTK_TEMPLATE_SPACES A list that defines folders with additional CMTK template spaces that can be used with
e.g. elmr or the nat.virtualflybrains R packages. Empty by default.

STATIC_EXTENSION_ROOT

The absolute local path where the static extension files are kept. These can

be loaded by the front-end to include custom out-of-source extensions in the

front-end (e.g. a custom widget). Defaults to <catmaid-paith>/django/staticext.

STATIC_EXTENSION_URL The URL under which custom front-end code can be made available. It is expected to
map to STATIC_EXTENSION_ROOT and is by default set to to <catmaid-subdir>/staticext/.

STATIC_EXTENSION_FILES

A list of file names that are allowed to be loaded by the front-end through

STATIC_EXTENSION_URL and STATIC_EXTENSION_ROOT. Empty by default.

NEW_USER_CREATE_USER_GROUP

Whether or not a matching user group should be created for every newly

created user. This can make user management easier if a lot of shared data

access is configured.

USER_REGISTRATION_CONFIRM_TERMS

68 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Whether or not a user registration form requires users to accept a set of

terms and conditions. Disabled by default.

USER_REGISTRATION_CONFIRM_TERMS_TEXT

The terms and conditions users need to accept upon registering, if this

confirmation is required.

PROJECT_TOKEN_USER_VISIBILITY

If enabled, logged in users will only see other users when they share a

project token. Disabled by default.

1.2.3 Administering a CATMAID Instance

This section presents information on how to update a running CATMAID instance and how to backup/restore its
database. These administrative tasks might be needed from time to time. Newer versions of CATMAID (obviously)
often include bug fixes and new features.

Often times, administrative tasks require CATMAID to be restarted. Generally, it is advisable to announce this to
active users. The first section has information on how to see all active connections if uwsgi is used as application
server.

List active connections

To get an idea how many active connections there are to a CATMAID back-end and uwsgi is used as WSGI server,
the tool uwsgitop can come in handy. It has to be installed separately into the virtualenv:

pip install uwsgitop

Then make sure uwsgi is configured to export statistics through a socket file. This can be done by adding the
following two lines to the respective uwsgi.ini file for the CATMAID setup:

stats = <path-to-run-dir>/uwsgi-stats.socket
memory-report = true

Note that <path-to-run-dir> needs to be writable by the user running uwsgi. Once uwsgi is restarted and
exports the socket file, it can be queried using uwsgitop (make sure to have the virtualenv active):

uwsgitop <path-to-run-dir>/uwsgi-stats.socket

It will list cumulative and current statistics for each worker process, which is useful to gauge the impact of a restart.

Updating to a newer version

Before updating to a newer version, please make sure that CATMAID is not currently running and that you have a
backup of your current database state.

You may be asked to upgrade the database in the release notes for the versions between your current and your target
version. If this is the case, follow those instructions first (after doing a database backup and stopping CATMAID).

Updating a CATMAID instance involves several steps: First move to your CATMAID instance’s root directory. This
is also the root of CATMAID’s Git repository:

1.2. Administrator Documentation 69

CATMAID Documentation, Release 2021.12.21

cd <LOCAL-CATMAID-PATH>

Next, get the source code version you are interested in. The following example will update to the current master branch
of Git’s “origin” remote:

git pull origin master

Note that this will merge into your local branch. So if you have local commits that you want to keep you might want
to rebase those on origin’s master branch using the “–rebase” option. If you are familiar with git branches, you may
prefer to switch to the maintenance/RELEASE branch for your target version (if you do this, you’ll switch branches
again the next time you do an upgrade).

Have a careful look at the required steps to update your current version to the target version. Both CHANGELOG.md
and UPDATE.md provide this information, the latter in a more condensed form. It is also available here. If there are
extra steps required, apply them as directed. You should read these for every version after your current version up to
your target version.

Then move into the Django sub-directory:

cd django

Activate the virtualenv:

source env/bin/activate

Update Python packages:

pip install -r requirements.txt

Should a database upgrade be required (e.g. Postgres 11 to 12 or PostGIS 2.5 to 3), make sure to upgrade PostGIS
first, by installing the new version for the current database and connect to every (!) database in the cluster and update
the postgis extension like this. This can be skipped if no database upgrade is required:

$ sudo -u postgres psql
> \c catmaid
> ALTER EXTENSION postgis UPDATE;
> \c <next-database>
> ALTER EXT...
> ...

Once, done perform, install the new database version and upgrade the database cluster using pg_upgrade. Using
the --link option can safe time on large databases and has been robust in our experience. This step can also be
skipped, if no database upgrade is needed.

Synchronize the Django environment with the database:

./projects/manage.py migrate

Collect new and changed static files:

./projects/manage.py collectstatic -l

Finally, start the CATMAID process, and visit it in your browser to ensure it is functioning. When done, if you have
other work to do on the system, you can close the virtualenv as follows:

deactivate

70 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Note: Updating PostGIS on your host system could cause CATMAID to stop working. See here for how to fix this.

Note: Updating from a CATMAID release before 2015.12.21 (with applied database migrations) requires to up-
date to release 2015.12.21 first, apply all database migrations and then continue with the release you actually want.
With the newer version, you have to then fake the initial migration: manage.py migrate catmaid --fake
0001_initial.

Backup and restore of the database

Ther eis a dedicated documentation page on this here <backup>.

Adding custom code

CATMAID supports adding custom code to its front end. This can be used to create custom tools separate from
upstream development, which can make administration easier: To do so, collect your custom JavaScript files in a
folder and add their filenames to the settings.py array variable STATIC_EXTENSION_FILES, for instance:

STATIC_EXTENSION_FILES += ('test.js',)

Next you will have to instruct your web-server to make this folder available through the URL defined in
STATIC_EXTENSION_URL, which defaults to “/staticext/”). CATMAID will then try to load those files after its
own files.

Performance tuning

There are various application involved to make CATMAID work: A web-server/load balancer, a WSGI server to
run the Python back-end and a PostgreSQL database server. The configuration of all of them can be optimized to
experience better performance. The following list of suggestions is not exhaustive and if you have suggestions we are
happy to hear about them.

Operating system and infrastructure

• In conjunction with the shared memory setting of PostgreSQL (see below), one should increase the kernel’s
shared memory limit. It defines how much memory can be used as a shared resource by different processes. A
rule of thumb is that one should use about 25% of the system’s RAM, but if the machine is equipped with plenty
of RAM one should be fine for most setups with 4GB (or even less). You can check this kernel setting with
sysctl kernel.shmmax. The default for most distributions is in the range of kilobytes and megabytes.

• The partition that is hosting the image tiles should be mounted with the noatime option. This makes sure no
access time is written every time an image file is read. Alternatively, you can use chattr to set this option for
individual files and folders.

• If LDAP is used to authenticate users and to check permissions on the server CATMAID is running or the image
data is loaded from, LDAP queries should be cached locally. Otherwise, an LDAP request will be made every
time a file is accessed.

• If the your server has a lot of memory, the Linux kernel defaults for the threshold for writing dirty memory pages
to disk are too high (10% of the available memory for start writing out, 20% for absolute maximum before I/O
blocks until write-out is done). To avoid large write-out spikes, it is advisable to have the kernel start writing out

1.2. Administrator Documentation 71

CATMAID Documentation, Release 2021.12.21

dirty pages after a lower threshold, e.g. 256MB: vm.dirty_background_bytes = 268435456. Also,
the threshold for the absolute maximum dirty memory threshold before I/O blocks until the write-out is finished
should be lowered, to e.g. 1GB: vm.dirty_bytes = 107374182.

• The kernel should also be discouraged from swapping cached data by setting vm.swappiness = 10.

Webserver

• The access log should be turned off and only critical errors should be written to the log. CATMAID can produce
a lot of requests and writing every single one to disk, especially if multiple users use CATMAID, can be a real
performance hit.

• Make use of the HTTP/2 protocol. Modern browsers and webservers support it and it only requires you to set
up SSL/TLS as an additional step before activating it. Through multiplexing, compression and prioritization
much better use of single connections. Requests can be answered more quickly and CATMAID will feel more
responsive.

• A cache server like Varnish can be beneficial on the machine that serves the image data. If multiple users load
the same image data, it will reduce the number of times image data has to be loaded from the hard drive.

• Have the webserver transfer data with GZIP. Make sure this includes JSON data with the content-type
application/json and binary data with the content-type application/octet-stream. In ng-
inx, you can include both by adding application/json and application/octet-stream to the
gzip_types setting.

• The CATMAID web-client can send large requests to the server. Increasing the web-server’s request buffer can
prevent writing such requests temporarily to disk. A buffer of 512kB should be plenty. In Nginx, this can be
done with client_body_buffer_size 512k;

• Request responses generated by CATMAID can be large as well. Increasing the webserver’s buffers to match
common response sizes can increase performance quite a bit if the buffer is large enough for the webserver
to avoid writing CATMAID’s response temporarily to a file and clients have access to a fast connection. For
Nginx this means increasing both proxy_buffer_size and proxy_buffers. The former is used for the
response headers only and can be (much) lower: proxy_buffer_size 64k;. The latter however defines
how many buffers of what size can be used for a single connection. For instance, if the uncompressed (!)
response of a typical spatial query for neurons is 1.5-2MB in size, allowing a 2MB proxy buffer per connection
would help performance. If you have enough memory available, you could set this with proxy_buffers
512 4k; (512 4k pages equals 2MB). Make sure there is enough memory available: for 100 active connections
this proxy buffer setting would require already 2GB.

• The webserver should mark image tiles to not expire so that they can be cached by a client. If the image data is
public, one could let the webserver also set the Cache-Control: public header for the images.

• To not require clients to ask every minute for particular updates (like new messages) use an ASGI server like we
describe here. This reduces some basline level of requests.

Database management system

• PostgresSQL’s shared memory setting should match what is allowed by the kernel. So if you set your ker-
nel to allow 4GB (see above), Postgres should use make use of it. This can be adjusted with the setting
shared_buffers in postgresql.conf.

• Keeping statistics of the CATMAID tables up to date is very important. These statistics are used by the query
planer to decide about the optimal realization of a query. This can be done manually by calling VACUUM
ANALYZE while being connected to the CATMAID database in a psql shell. It is also possible (and advisable)
to automate this with by setting autovacuum = on in postgresql.conf.

72 Chapter 1. Documentation

https://http://en.wikipedia.org/wiki/HTTP/2

CATMAID Documentation, Release 2021.12.21

• According to the Django manual, Django expects the following parameters for its database connections:
client_encoding: 'UTF8', default_transaction_isolation: 'read committed'
and timezone: 'UTC' when USE_TZ is True, value of TIME_ZONE otherwise (USE_TZ is CATMAID’s
default). All of these settings can be configured in postgresql.conf or more conveniently per database
user with ALTER ROLE. If these parameters are not the default, Django will do some additional queries to set
these parameters for each new connection. Having those defaults set will improve the database performance
slightly.

• We found that making JIT compilation of queries less likely, helps with many spatial queries, where
cost estimates aren’t very reliable in many cases. This can be done by raising the default value for the
jit_above_cost (100,000) variable in the postgresql.conf file to a value of 1,000,000 or even higher:

jit_above_cost = 1000000

CATMAID

• Make sure CATMAID is not running in debug mode by checking settings.py in django/projects/
mysite: It should contain DEBUG = False. If you get a Bad Request (400) response, make sure you have
set your ALLOWED_HOSTS setting in the settings.py file correct.

• Set Django’s CONN_MAX_AGE option in the database settings of your settings.py file, if you don’t use
a greenlet based threading model for your WSGI server’s workers (see here for an explanation). This setting
controls how long (in seconds) a database connection can be re-used. In the default configuration, this is set to 0,
which causes every request to use a new database connection. To test if this setting can be used in your environ-
ment, set it to a value like 60 and monitor the number of database connections (e.g. with SELECT count(*)
FROM pg_stat_activity;). If this number matches your number of WSGI workers (plus your own psql
connection), everything is fine. If the number increases over time, you should set CONN_MAX_AGE back to 0,
because new connections are apparently not closed anymore (which can happen with greenlet based threading).

• If database connection pooling is used (see CONN_MAX_AGE above), it can help spatial query performance to
use prepared statements. These are created for each database connection and pose an overhead without connec-
tion pooling. To enable prepared statement add PREPARED_STATEMENTS = True to the settings.py
file.

• Depending on the number of nodes per section, using a different spatial query type can help performance. By
default CATMAID uses the so called postgis3d node provider as query strategy. This can be changed to the
alternative postgis2d node provider by adding NODE_PROVIDER = 'postgis2d' to the settings.
py file. It is also possible to cache larger field of views on tracing data and only update this cache periodically.
This can improve performance dramatically. Read more about it here.

• If there are too many nodes to be displayed with usable performance, the number of returned nodes can be
limited. This can be done by setting NODE_LIST_MAXIMUM_COUNT = <number> in the settings.py
file to a maximum number of nodes to be queried (e.g. 20000). If however a node limit is not really needed and
most requests don’t hit it, setting NODE_LIST_MAXIMUM_COUNT to None can slightly improve performance,
too.

• If neuron reconstruction statistics are slow to compute, consider running the management command manage.
py catmaid_refresh_node_statistics to populate an optional statistics summary table. Consider
running this command regularly over, e.g. over night using Celery or a cron job.

• If large client requests result in status 400 errors, you might need to raise the
DATA_UPLOAD_MAX_MEMORY_SIZE setting, which is the maximum allowed request body size in
bytes. It defaults to 10 MB (83886080).

• Consider using node grid cache for large tracing data set, which can speed up loading and supports
level-of-detail as well as dynamic updates based on database events. Automatic cache updates require
SPATIAL_UPDATE_NOTIFICATIONS to be set to true in settings.py (default). If caching is not an

1.2. Administrator Documentation 73

https://docs.djangoproject.com/en/1.6/ref/databases/#optimizing-postgresql-s-configuration
http://www.postgresql.org/docs/current/interactive/sql-alterrole.html
https://docs.djangoproject.com/en/1.6/ref/databases/#persistent-connections
https://github.com/benoitc/gunicorn/issues/996

CATMAID Documentation, Release 2021.12.21

option, make sure to set SPATIAL_UPDATE_NOTIFICATIONS = False if you deal with large skeletons
(>50k nodes) to make operations like joins faster.

Making CATMAID available through SSL

By default the connection between the CATMAID server and a browser is unencrypted. This means data can be read
and manipulated on the way between both sides. To protect sensitive data like passwords and to improve security as
a whole, it is recommended to use SSL/TLS to encrypt this communication. Below you will find notes on how to do
this with Nginx.

The webserver is the first place where the configuration has to be changed. Given that you created a certificate and key
file, you would add the following to your Nginx server configuration:

server {
listen 443;
...

ssl on;
ssl_certificate /etc/nginx/ssl/server.crt;
ssl_certificate_key /etc/nginx/ssl/server.key;
ssl_prefer_server_ciphers on;
ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
ssl_ciphers

→˓"EECDH+ECDSA+AESGCM:EECDH+aRSA+AESGCM:EECDH+ECDSA+SHA256:EECDH+aRSA+SHA256:EECDH+ECDSA+SHA384:EECDH+ECDSA+SHA256:EECDH+aRSA+SHA384:EDH+aRSA+AESGCM:EDH+aRSA+SHA256:EDH+aRSA:EECDH:!
→˓aNULL:!eNULL:!MEDIUM:!LOW:!3DES:!MD5:!EXP:!PSK:!SRP:!DSS:!RC4:!SEED";

...
}

If you refer to certificates and keys in Nginx that it didn’t know before, you have to restart it (instead of reloading the
configuration). The reason is that the Nginx process drops privileges after loading and root permissions are required
to read the certificates and keys.

A good resource to test your configuration and to disable weak ciphers is Qualys SSL Labs.

Django’s settings.py has to be updated as well to make sure it will only hand out session cookies and CSRF
tokens on a secure connection:

This CATMAID instance is served through SSL/TLS. Therefore, send session
cookies only over HTTPS and don't add CSRF tokens for non-HTTPS connections.
SESSION_COOKIE_SECURE = True
CSRF_COOKIE_SECURE = True
Assume a secure connection, if the X-FORWARDED-PROTO header is set to
'https'. This implies that one has to make sure this head is only set to
'https' if the connection is actually secure.
SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https')

Please make also sure that you override the X-Forwarded-Proto header passed to Django. It should only contain
“https” if the connection is actually secure. Consult the Django documentation to read more about this.

With this you should be able to provide a secure connection to your CATMAID server.

74 Chapter 1. Documentation

https://www.ssllabs.com/ssltest/
https://docs.djangoproject.com/en/1.6/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER

CATMAID Documentation, Release 2021.12.21

1.2.4 Setting Up Nginx for CATMAID

We made good experience using Nginx together with uWSGI and this setup will get be explained in more detail below.
CATMAID will of course work with other web-servers and UWSGI servers as well. Further down some information
on alternative setups using Gevent or Gunicorn are briefly discussed.

The installation instructions provided here, assume that you have set up the database and Django as described in the
standard installation instructions.

Setup based on Nginx and uWSGI

uWSGI is a versatile WSGI server written in C, and can serve as the middle layer between Nginx and CATMAID. It
works well with connection pooling and communicates efficiently with Nginx.

1. Install nginx, on Ubunto this would be:

sudo apt-get install nginx

2. Being in CATMAID’s virtualenv, install uwsgi:

pip install uwsgi

3. Create a new configuration file for uwsgi called catmaid-uwsgi.ini in CATMAID’s django/
projects/mysite/ folder:

; uWSGI instance configuration for CATMAID
[uwsgi]
virtualenv = <path-to-virtual-env>
chdir = <catmaid-path>/django
socket = /var/run/catmaid/uwsgi.socket
mount = /<catmaid-relative-url>=<catmaid-path>/django/projects/mysite/django.wsgi
manage-script-name = true
workers = 2
threads = 2
disable-logging = true

Important: there should not be a trailing slash after the mountpoint /<catmaid-relative-url> above.
Note also that each thread of each worker will typically have one database connection open. This means Postgres
will try to allocate a total of about workers * threads * work_mem (see postgresql.conf). Make sure you
have enough memory available here.

4. Make sure that the socket directory from your .ini file (/run/uwsgi/app/catmaid/ above) exists
and is readable and writable by the user that will run uwsgi. You now should able to start uWSGI manually,
running it as the current user:

uwsgi --ini <catmaid-path>/django/projects/mysite/catmaid-uwsgi.ini

Also note that Nginx needs to be able to access the created socket file to communicate with uWSGI. Either
you run uwsgi as the user running Nginx (typically www-data) or you give the Nginx user access on the file,
e.g. by using a SetGID sticky bit on the socket folder so that all files created in it have automatically the
default group of the Nginx running user assigned (typically www-data).

5. Here is a sample nginx configuration file, where <catmaid-relative-url> = /catmaid (replace this
with / if you don’t run in a subdirectory). At the end of this chapter you will find a more complete example
configuration:

1.2. Administrator Documentation 75

http://projects.unbit.it/uwsgi/

CATMAID Documentation, Release 2021.12.21

server {
listen 80;
server_name <CATMAID-HOST>;

Give access to Django's static files
location /catmaid/static/ {

alias <CATMAID-PATH>/django/static/;
}

Route all CATMAID Django WSGI requests to uWSGI
location /catmaid/ {

include uwsgi_params;
uwsgi_pass unix:///run/uwsgi/app/catmaid/socket;

}
}

Note: To serve static files, Nginx needs execute permission on every directory in the path to those files
(<CATMAID-PATH>/django/static in example above). To check this, the namei command can be very help-
ful, because it can list permissions for each path component when called like this: namei -l <CATMAID-PATH>/
django/static.

Also, it easy to miss, but important that the the relative URL in the mount line of the uWSGI configuration in step 3
has to be exactly the same as the uWSGI location block in the Nginx configuration in step 5, including whether there
is an ending slash character.

CORS

Serving image data works the same way as serving CATMAID static data. If the image data is going to be accessed
from websites that aren’t served from the same server, CORS has to be set up. CORS stands for Cross Origin Resource
Sharing and manages security of web-clients accessing a particular resource. The same has to be done if a CATMAID
API should be accessible by other CATMAID servers.

In its simplest form, this can be done by adding the following line to an Nginx location block. It’s only this simple
though if no basic HTTP authentication is in use:

Access-Control-Allow-Origin *

Without this header, only a CATMAID instance served from the same domain name as the image data will be able to
access it. If the image data or CATMAID server should be accessed by CATMAID instances served on other domains,
this header is required.

In order to support basic HTTP authentication and allow caching of preflight requests, consider the following more
complete example, which can be added to any location block:

Require HTTP Bsic Auth, except for OPTIONS requests. This is needed
for CORS preflight requests. If no HTTP basic auth is wanted, this block
can be skipped.
limit_except OPTIONS {

auth_basic "Restricted";
auth_basic_user_file /path/to/logins;

}

Allow any origin (be more restrictive if wanted)
add_header 'Access-Control-Allow-Origin' '*' always;

(continues on next page)

76 Chapter 1. Documentation

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

Credentials can be cookies, authorization headers or TLS client certificates
add_header 'Access-Control-Allow-Credentials' 'true' always;
What methods should be allowed when accessing the resource in response to a
→˓preflight request
add_header 'Access-Control-Allow-Methods' 'GET, POST, PATCH, PUT, DELETE, OPTIONS'
→˓always;
Access-Control-Allow-Headers response header is used in response to a preflight
→˓request to indicate which HTTP headers can be used during the actual request.
add_header 'Access-Control-Allow-Headers' 'DNT,X-CustomHeader,Keep-Alive,User-Agent,X-
→˓Requested-With,If-Modified-Since,Cache-Control,Content-Type,X-Authorization,
→˓Authorization' always;

Preflighted requests. Headers from above are repeated, because of the
new context being created due to the return statement (causing above
headers to not be visible).
if ($request_method = 'OPTIONS') {

We need to re-add these headers, because the return statement in the if-
→˓block causes this to be a different context.

add_header 'Access-Control-Allow-Origin' '*' always;
add_header 'Access-Control-Allow-Credentials' 'true' always;
add_header 'Access-Control-Allow-Methods' 'GET, POST, PATCH, PUT, DELETE,

→˓OPTIONS' always;
add_header 'Access-Control-Allow-Headers' 'DNT,X-CustomHeader,Keep-Alive,User-

→˓Agent,X-Requested-With,If-Modified-Since,Cache-Control,Content-Type,X-Authorization,
→˓Authorization' always;

Tell client that this pre-flight info is valid for 20 days
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;

}

Note that this allows any other client to access the API, if added to the regular WSGI location block. It also makes
sure preflight requests are cached.

Image data

Image data often is supposed to be accessed from many different clients, some of which aren’t originating from the
same domain name the images are hosted. In order to make this as seamless as possible, CORS needs to be set up (see
previous section). A typical tile data location block could look like the example below. There a tile is looked up and if
not found, a black default tile is returned instead:

location ~ /tiles/dataset/(.*)$ {
Try to open path to tile, fallback to black.jpg for non-existent tiles.
try_files /data/dataset/tiles/$1 /data/dataset/tiles/black.jpg =404;

expires max;
add_header Cache-Control public;
CORS header to allow cross-site access to the tile data
add_header Access-Control-Allow-Origin *;
Logging usually not needed
access_log off;

}

Besides adding the CORS header, caching is also set to be explicitly allowed, which might be helpful for data that
doesn’t change often.

1.2. Administrator Documentation 77

CATMAID Documentation, Release 2021.12.21

Of course, like with other static files, Nginx must be able able read those files and it needs execute permissions on
every directory in the path to the image data.

Process management with Supervisor

Depending on your setup, you might use custom scripts to run a WSGI server, Celery or other server components. In
this case, process management has to be taken care of as well, so that these scripts are run after a e.g. a server restart.
One way to do this is using supervisord. We found it to be reliable, flexible and easy to configure with multiple
custom scripts. For each program or program group a new configuration file has to be created:

/etc/supervisor/conf.d/<name>.conf

Such a configuration file can contain information about individual programs and groups of them (to manage them
together). Below you will find an example of a typical setup with a uWSGI start script and a Celery start script, both
grouped under the name “catmaid”:

[program:catmaid-app]
command = /home/catmaid/catmaid-server/django/env/bin/uwsgi --ini /opt/catmaid/django/
→˓projects/mysite/catmaid-uwsgi.ini
user = www-data
stdout_logfile = /home/catmaid/catmaid-server/django/projects/mysite/uwsgi.log
redirect_stderr = true
stopsignal = INT

[program:catmaid-celery]
command = /home/catmaid/catmaid-server/django/projects/mysite/run-celery.sh
user = www-data
stdout_logfile = /home/catmaid/catmaid-server/django/projects/mysite/celery.log
redirect_stderr = true

[group:catmaid]
programs=catmaid-app,catmaid-celery

This of course expects a CATMAID instance installed in the folder /opt/catmaid/. The stopsignal = INT
directive is needed for uwsgi, because it interprets Supervisor’s default SIGTERM as “brutal reload” instead of
stop. An example for a working run-celery.sh script can be found :ref:`here <celery_supervisord>`__. With
the configuration and the scripts in place, supervisord can be instructed to reload its configuration and start the
catmaid group:

$ sudo supervisorctl reread
$ sudo supervisorctl update
$ sudo supervisorctl start catmaid:

For changed configuration files also both reread and update are required.

Maintenance mode

A simple way to display a maintenance mode page in case of an unreachable WSGI server can be configured with
the help of Nginx. First, a simple HTML error page is made available as named location block. The CATMAID repo
includes an example. The main CATMAID entry location block then references the maintenance location in the case
of an unreachable upstream server:

location / {
Handle error pages

(continues on next page)

78 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

location @maintenance {
root /home/catmaid/catmaid-server/docs/html;
rewrite ^(.*)$ /maintenance.html break;

}

location /tracing/fafb/v14/ {
error_page 502 503 504 @maintenance;
include uwsgi_params;
uwsgi_pass catmaid-fafb-v14;
expires 0;
Add optional CORS header

}
}

1.2.5 Example configurations

This shows a more complete example configuration that we have used in a similar form in production, including
support for WebSockets (/channels/ endpoint). The CORS config above is made available as /etc/nginx/
snippets/cors.conf and included in the CATMAID config:

server {
listen 443 ssl http2;

server_name <CATMAID-HOST>;

ssl_certificate <CERT-PATH>;
ssl_certificate_key <CERT-KEY-PATH>;

Force browsers to keep using https instead of http
add_header Strict-Transport-Security "max-age=604800";

location ~ /tiles/dataset/(.*)$ {
Try to open path to tile, fallback to black.jpg for non-existent tiles.
try_files /data/dataset/tiles/$1 /data/dataset/tiles/black.jpg =404;

expires max;
add_header Cache-Control public;
CORS header to allow cross-site access to the tile data
add_header Access-Control-Allow-Origin *;
Logging usually not needed
access_log off;

}

location /path/to/catmaid/static/ {
alias /home/catmaid/catmaid-server/django/static/;

}
location /path/to/catmaid/files/ {
alias /home/catmaid/catmaid-server/django/files/;

}
location /path/to/catmaid/channels/ {
proxy_pass http://catmaid-fafb-v14-asgi/channels/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";

(continues on next page)

1.2. Administrator Documentation 79

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

proxy_redirect off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Host $server_name;

}
location /path/to/catmaid/ {
error_page 502 503 504 @maintenance;

Use default uWSGI params and unix socket
include uwsgi_params;
uwsgi_pass unix:///var/run/catmaid/uwsgi.socket;

No caching
expires 0;
add_header Cache-Control no-cache;

We need to allow larger requests for our setup (long neuron lists).
client_max_body_size 20m;

Include open CORS config
include snippets/cors.conf;

}

Handle error pages
location @maintenance {
root /home/catmaid/public_html;
rewrite ^(.*)$ /502.html break;

}
}

In order to makue sure, the in-memory filesystem folder /run/catmaid/uwsgi.socket is available after a
reboot, the following can be added to /etc/rc.local:

if [! -d /var/run/catmaid]; then
mkdir /var/run/catmaid/
chown www-data:www-data /var/run/catmaid/
chmod 755 /var/run/catmaid/

fi

Make sure to exit rc.local with success code
exit 0

The following uWSGI configuration allows zero-downtime updates and includes a statistics socket for uwsgi-top:

;uWSGI instance configuration for CATMAID
[uwsgi]
chdir = /home/catmaid/catmaid-server/django/
virtualenv = /home/catmaid/catmaid-server/django/env
pidfile = /var/run/catmaid/uwsgi.pid
chmod-socket = 666
socket = /var/run/catmaid/uwsgi.socket
mount = /path/to/catmaid=/home/catmaid/catmaid-server/django/projects/mysite/django.
→˓wsgi
manage-script-name = true
uid = www-data

(continues on next page)

80 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

gid = www-data
#plugins = python
workers = 8
threads = 2
disable-logging = true
master = true

POST buffering
post-buffering = 8192

Stats
stats = /var/run/catmaid/uwsgi-stats.socket
memory-report = true

During deploy, old and new master share the same socket. With vacuum=true,
old master would delete it during shutdown.
vacuum = false

CATMAID in started in lazy-apps mode, i.e. each worker has a full copy of
the code in memory. Workers are managed by a master process (no emperor).
master = true
lazy-apps = true

Use this file as a flag to indicate the uwsgi process is ready to accept
connections. The file can be looked up during deploy, but it has no meaning
afterwards. Even there, it is not strictly necessary. It's only a safety
check.
hook-accepting1-once = write:/var/run/catmaid/catmaid.ready ok
hook-as-user-atexit = unlink:/var/run/catmaid/catmaid.ready

Create two FIFO slots that we can switch between during runtime. A switch is
done by sending [0,10] to the current FIFO, by default the first (0) is
selected.
master-fifo = /var/run/catmaid/new_instance.fifo
master-fifo = /var/run/catmaid/running_instance.fifo

If there is a running instance, terminate it as soon as the first worker is
ready to accept connections.
if-exists = /var/run/catmaid/running_instance.fifo

hook-accepting1-once = writefifo:/var/run/catmaid/running_instance.fifo q
endif =

On start-up, switch from the initial new_instance fifo queue to the
new_instance queue, by providing the new fifo's index (1) and update the PID
file (P).
hook-accepting1-once = writefifo:/var/run/catmaid/new_instance.fifo 1P

Like in the initial example, the Supervisor config ties all programs together, this time including the ASGI server
Daphne:

[program:catmaid-server-uwsgi]
directory = /home/catmaid/catmaid-server/django/projects/
command = /home/catmaid/catmaid-server/django/env/bin/uwsgi --ini /etc/uwsgi/apps-
→˓available/catmaid-server.ini
user = www-data
stdout_logfile = /var/log/catmaid/catmaid-server.log

(continues on next page)

1.2. Administrator Documentation 81

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

redirect_stderr = true
stopsignal = INT

[program:catmaid-server-daphne]
directory = /home/catmaid/catmaid-server/django/projects/
command = /home/catmaid/catmaid-server/django/env/bin/daphne --unix-socket=/var/run/
→˓catmaid/daphne.sock --access-log - --proxy-headers mysite.asgi:application
user = www-data
stdout_logfile = /var/log/catmaid/daphne-server.log
redirect_stderr = true

[program:catmaid-server-celery]
directory = /home/catmaid/catmaid-server/django/projects/
command = /home/catmaid/catmaid-server/django/env/bin/celery -A mysite worker -l info
→˓--pidfile=/var/run/catmaid/celery.pid
user = www-data
stdout_logfile = /var/log/catmaid/celery.log
redirect_stderr = true

[program:catmaid-server-celery-beat]
directory = /home/catmaid/catmaid-server/django/projects/
command = /home/catmaid/catmaid-server/django/env/bin/celery -A mysite beat -l info --
→˓pidfile=/var/run/catmaid/celery-beat.pid --schedule=/var/run/catmaid/celery-beat-
→˓schedule-catmaid-server
user = www-data
stdout_logfile = /var/log/catmaid/celery-beat.log
redirect_stderr = true

[group:catmaid-server]
programs=catmaid-server-uwsgi,catmaid-server-daphne,catmaid-server-celery,catmaid-
→˓server-celery-beat

1.2.6 Backup and restore the database

Making a backup of CATMAID’s Postgres database as well as restoring it, is currently a manual process. Making
backups can and should be automated through the operating system though. Also keep in mind that a certain database
state is related to a certain source code version. This means after restoring a backup, a database migration might still
be needed. To avoid this, reflecting the commit name in the backup name, might be a good idea. In most situations
this shouldn’t be a concern though.

There are different ways of backing up CATMAID databases. Below three different options are shown that increase
with complexity, but also come with additional benefits like less space requirements or point in time recovery (PITR).
The first method is easy to set up and if nothing else, this should be set up as a basic backup strategy.

82 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Modifying the database directly

To avoid database triggers firing during direct database modifications during a backup restore, it can be useful to
disable database triggers. The following SQL can be used to disable triggers temporarily:

SET session_replication_role = replica;

/* Do your edits */

SET session_replication_role = DEFAULT;

Generally though, triggers are wanted and you should have a very good reason to disable them.

Backup of complete databases using pg_dump

To backup a CATMAID database (here named catmaid) execute:

pg_dump -Fc --clean -U <CATMAID-USER> catmaid -f "catmaid-`date +%Y%m%d%H%M`.gz.dump"

This produces a file that includes a time stamp in its name (note the backticks!) and that can be used to restore an
entire CATMAID instance. The file itself uses a Postgres specific format to improve loading speed and restoration
options.

To restore the dumped database into a database named catmaid (which would have to be created as described in the
basic install instructions, including the database user referenced in the backup):

pg_restore -U <CATMAID-USER> -d catmaid catmaid_dump.sql

Both commands will ask for the password. Alternatively, you can use the scripts scripts/database/
backup-database.py and scripts/database/revert-database.py, which do the same thing. Those
don’t ask for a password, but require a .pgpass file (see PostgreSQL documentation).

Note that the pg_dump command above will not include any Postgres user information. Like explained in the in-
stallation instructions, the would have to be created first, before the pg_restore command is called. Alternatively,
users and other global database objects can be backed up as well in a separate file:

sudo -u postgres pg_dumpall --globals-only | gzip -9 > "globals.gz.dump"

Which in turn could be restored in a completely new database like this:

zcat globals.gz.dump | sudo -u postgres psql

Afterwards the above pg_restore command can be executed without further action.

Excluding materialized views from backup

Some tables in CATMAID contain data that is procomputed from other tables. These “materialized views” can be
omitted from backups and recreated after a backup restore. This reduces the size of backups, but increases the time to
reload backups.

If e.g. -T treenode_edge is used with pg_dump, the treenode_edge table is not part of the backup. Without
any -T option, all tables are exported and no additional steps are required after a restore.

The following tables can be ommitted from a backup (-T option with pg_dump), because they can be recre-
ated after a backup is restored: treenode_edge, treenode_connector_edge, connector_geom,
catmaid_stats_summary, node_query_cache, catmaid_skeleton_summary.

1.2. Administrator Documentation 83

http://www.postgresql.org/docs/current/static/libpq-pgpass.html

CATMAID Documentation, Release 2021.12.21

If one or more of these tables isn’t part of a backup, it is required to backup the schema separately by using
pg_dump --schema-only. When restoring, the schema has to be restored first, because the tables not in-
cluded in the backup need to be created regardless. This command is followed by a pg_restore --data-only
--disable-triggers of the data dump.

If the -T option was used, the following command has to be executed additionally to complete the import:

manage.py catmaid_rebuild_edge_table

The script scripts/database/backup-min-database.sh can be used to export all databases without in-
cluding the tables mention above. To restore such a backup, four steps are needed. Assuming the database name is
catmaid (otherwise change the -d catmaid parameters), they are:

1. Import the schema, which includes all tables. Make sure the relevant database user exists already, or use the
“globals” export file. The target database name is part of the filename and matches the original database:

$ sudo zcat catmaid.schema.gz.dump | sudo -u postgres psql -p 5432

2. Import the data into the new database:

$ sudo -u postgres pg_restore -p 5432 -d catmaid --data-only --disable-triggers \

-S postgres –jobs=4 /path/to/backups/catmaid.all.gz.dump

3. Analyze database, for faster restoration of materialzied views:

$ sudo -u postgres psql -p 5432 -d catmaid -c "\timing on" -c "ANALYZE;"

4. Recreate all materializations:

$ manage.py catmaid_rebuild_all_materializations

Automatic periodic backups

A cron job can be used to automate the backup process. Since this will be run as the root user, no password will be
needed. The root user’s crontab file can be edited with:

sudo crontab -e

The actual crontab file is not meant to be edited directly, but only through the crontab tool. To run the above backup
command every night at 3am, the following line would have to be added:

0 3 * * * sudo -u postgres pg_dump --clean catmaid -f "/opt/backup/psql/catmaid_
→˓$(date +\%Y\%m\%d\%H\%M).sql"

This creates a new file in the folder /opt/backup/psql at 3am every night. It will fail if the folder
isn’t available or writable. The file name includes the date and time the command is run and will look like
catmaid_201509101007.sql. Because cron treats % characters differently, they have to be escaped when
calling date). The first five columns represent the date and time pattern when the command (sudo -u postgres
...) should be run. It consists of minute, hour, day of month, month and day of week with asterisks meaning any. For
more information see the manual pages of cron and crontab. Because this command is run as root and the actual
pg_dump call is executed as postgres user with the help of sudo, no database password is required. If your actual
backup command gets more complicated than this, it is recommended to create a script file and call this from cron.

84 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

1.2.7 Node providers

CATMAID uses so called node providers query tracing data from the database. Depending on the query there are
different query strategies that can be useful. By default CATMAID uses a node provider called postgis3d, which
uses a 3D bounding box query on a PostGIS representation of the tracing data. This works well with very dense data
and seems to be a good average. The NODE_PROVIDERS setting in settings.py gives access to the behavior
and allows to configure different node providers along with constraints that would mark them valid or invalid for a
particular request. This allows to e.g. use a caching node provider that doesn’t update immediately for large field of
views. For smaller field of views a regular postgis3d node provider might be used. These are the available node
providers:

postgis2d Nodes are queried using a PostGIS 2D index. This seems fast for sparser data and large field of views.

postgis2dblurry Like postgis2d, but one intersection test less, which includes more false positives for a
given bounding box. It is however also faster.

postgis3d Nodes are queried using a PostGIS 3D index. This seems fast for denser data and smaller field of views.

postgis3dblurry Like postgis3d, but one intersection test less, which includes more false positives for a
given bounding box. It is however also faster.

cached_json A cached version of the data for a given section using the node_query_cache table. It is stored
as JSON database object.

cached_json_text A cached version of the data for a given section using the node_query_cache table. It is
stored as JSON text string.

cached_msgpack A cached version of the data for a given section using the node_query_cache table. It is
stored as msgpack encoded binary database object.

Cached node queries

The caches for use with the last three entries can be populated using the following management command:

manage.py catmaid_update_cache_tables

It allows to populate cache data for the formats json, json_text and msgpack based on a set of parameters. It
can be run for all projects or a subset. A typical call could look like this:

manage.py catmaid_update_cache_tables --project_id 1 --type msgpack --orientation xy -
→˓-step 40 --node-limit 0

The --step parameter sets the section thickness, i.e. Z resolution in xy orientation. A --node-limit of 0 will
remove any existing node limits. The type msgpack turned out to be the fastest one in our tests so far.

It makes sense to automate this process to run once every night. This can be done with a cron-job or with predefined
Celery tasks, which can be added to settings.py like this:

CELERY_BEAT_SCHEDULE['update-node-query-cache'] = {
'task': 'update_node_query_cache',
'schedule': crontab(hour=0, minute=30)

}

This would require Celery Beat to run. If it does, it would update all caches defined in NODE_PROVIDERS every
night at 00:30.

1.2. Administrator Documentation 85

CATMAID Documentation, Release 2021.12.21

Using multiple node providers

It is possible to define multiple node providers that are valid in different or the same situation. An example could look
like this:

NODE_PROVIDERS = [
('cached_msgpack', {

'enabled': True,
'min_width': 200000,
'min_heigth': 120000,
'orientation': 'xy'

}),
('postgis3d', {

'project_id': 2
}),

Fallback
'postgis2d'

]

For an incoming request, CATMAID will first find all valid node providers, depending on e.g. the project ID, or
bounding box of the query. It will then iterate this list and return results from the first node provider that returns
results. The following options are available for all node providers:

enabled Whether the node provider can be used at all.

project_id: For which project this node provider can be used.

orientation For which orientation this node provider can be used.

min_width Which minimum width the query bounding box must have for this node provider (in project coordi-
nates).

min_height Which minimum height the query bounding box must have for this node provider (in project coordi-
nates).

min_depth Which minimum depth the query bounding box must have for this node provider (in project coordi-
nates).

max_width Which maximum width the query bounding box can have for this node provider (in project coordinates).

max_height Which maximum height the query bounding box can have for this node provider (in project coordi-
nates).

max_depth Which maximum depth the query bounding box can have for this node provider (in project coordinates).

1.2.8 Permissions and access control

There are multiple levels of user permissions available in CATMAID. All of them are configured from within the
admin interface, reachable by appending /admin to your regular CATMAID URL and opening it in a browser.

Permissions can be given to either users or groups. Users can be members of multiple groups and using them makes
user and permission management often a little bit easier.

86 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Project access and visibility

Users can access projects through either the top menu bar, a front page (data view), a deep link or directly through
the API. Which projects users can see and access by these means is determined by whether they have can-browse
permission on those projects.

To view and change project permissions, open a project in CATMAID’s admin view and click “Object permissions”
in the upper right corner. There it is possible to add either individual users or groups to the various permissions that
exists for projects (including can-browse).

If users or groups have can-annotate permissions they are allowed to create new data (e.g. neuron reconstructions
or ontology classifications) in a project. This permission also makes it possible to edit data that was created by other
users. However, for this another test comes into play as well and not every user can edit the data of all other users. See
next section for more details.

The can-administer permission provides access to additional group management and user analysis tools, mainly
useful for group managers. It will add additional tools to the statistics widget in the web-client.

The anonymous user is with respect to project visibility a special case. If a project should be publicly visible, the
anonymous user needs to have can-browse permissions on the project, but another permission is needed as well:
in the anonymous user’s own user settings the general “catmaid | can browse projects” setting has to be assigned.
With this, the anonymous user acts just like a regular user and can be assigned project specific can-browse and
can-annotate permissions.

In total there are seven different permissions CATMAID understands with respect to projects:

Permission Description
can_administer Edit various project wide settings and view user statistics.
can_annotate Write to a project by creating e.g. tracing data or annotations.
can_browse Read data from the project, needed see the project and look at it.
can_import New data can be imported into a project, either from files or remote sources.
can_queue_compute_task Tasks like large project data exports can be started.
can_annotate_with_token Write operations are allowed through the API.
can_fork Personal copies of projects (only stacks) can be created.

By default, no permission is assigned. All of them can be assigned to users or groups like described above though.

Inactive users

Users who are marked as inactive won’t be able to log into CATMAID. Once reactivated, these user accounts are fully
functional again. By default, users have to be marked inactive manually. It is however also possible to automatically
deactivate user accounts after a specified time. If Celery and Celery Beat are set up, a periodic task will check every
night if user accounts need deactivation.

Which user accounts get deactivated is configured based on which user groups they are in. Group Inactivity Periods
are objects that associate a user group with a maximum inactivity time as well as an optional message and (internal)
comment. During activity check, the last login of a user is looked up and compared against the specified maximum
inactivity time. If the last login exceeds this interval, the user account is made inactive. These Group Inactivity Periods
can be managed in the respective admin view.

For each Group Inactivity Period contact, users can be specified, who are displayed to users who have been inactivated
due to this mechanism try to login. A message displayed to them explains the situation and how long the inactivity
period is they violated.

1.2. Administrator Documentation 87

CATMAID Documentation, Release 2021.12.21

Editing data of other users

Users with can-annotate permission on a project can create new data and by default, users can’t edit data of each
other. However, they are allowed to to so if they are member of a group with a name matching the data creator’s login
name. So user A can edit user B’s data if user A is member of a group named B. Superusers can edit data of everyone.

Additionally, there is the special case of imported data. When skeleton data is imported from a remote source, CAT-
MAID will try to keep the original creator and editor information in tact. With the rules above, this can possibly have
the effect that the user who imported a skeleton can’t edit it or even remove it, if it was imported by accident. This
happens if the importing users has no permission over data of the users who originally created the imported skeleton.
To avoid this, there is the following extra rule: a user who imported a node or skeleton has full permissions over it,
just as if it was their own. No permissions are granted this way on the imported data of other users. However, if user
A has imported data and user B has permission on that user’s data (by being in user A’s user group), user B will also
have permissions over the imported data.

1.2.9 Installation of the Celery task queue

Some tasks of CATMAID can be somewhat time consuming and don’t fit into the regular request-response cycle, e.g.
cropping or statistics aggregation. These tasks are run asynchronously by the task queue Celery. CATMAID doesn’t
talk directly to Celery, but uses a so called message broker, which Celery talks to to get new tasks. Different brokers
are supported by Celery and a popular choice is RabbitMQ. Like most of the CATMAID server configuration, Celery
can be configured through the settings.py file.

Note that Celery or the message broker don’t need to be running to run CATMAID in general. This only prevents
certain functionality (e.g. cropping) from working. If however a message broker is around, CATMAID will accept
tasks, which will get executed once Celery is started.

Below you find information on how to setup Celery and RabbitMQ in the context of CATMAID. Since the message
broker is the part that CATMAID talks to, it is configured first.

Prerequisites

The basic CATMAID setup needs to be completed before configuring Celery and RabbitMQ (or any other message
broker). This should already install Celery as a dependency.

RabbitMQ as message broker

It is the so called message broker that takes tasks and tells Celery to execute them. There are several options available
and we focus on RabbitMQ, which has proven fast and reliable for our use cases and can be configured to provide
access through Django’s admin interface. First, the RabbitMQ server has to be installed:

sudo apt-get install rabbitmq-server

This should also start the server automatically. RabbitMQ comes with a plugin infrastructure and one particular useful
plugin is one that adds support for management commands. Based on this one is able to get information on Celery
workers through the broker from within Django’s admin interface. To enable it, call:

sudo rabbitmq-plugins enable rabbitmq_management

If the rabbitmq-plugins binary is not available in your environment, check the typical installation directory and
run the tool from there:

/usr/lib/rabbitmq/lib/rabbitmq-server-<RABBITMQ-VERSION>/sbin/

88 Chapter 1. Documentation

http://www.celeryproject.org/
http://www.rabbitmq.com

CATMAID Documentation, Release 2021.12.21

After enabling or disabling plugins, RabbitMQ has to be restarted:

sudo service rabbitmq-server restart

To display a list of all available plugin and whether they are enabled, call:

sudo rabbitmq-plugins list

This also enables a web-interface will be available on port 15672. The default user and password combination is
guest/guest. Of course it is advisable to change these login credentials.

This should be all to have RabbitMQ running. Next, we need to add a user and virtual host on the RabbmitMQ server,
which adds to security and makes it easier to run multiple isolated Celery servers with a single RabbmitMQ instance:

sudo rabbitmqctl add_user catmaid_user catmaid_pass
sudo rabbitmqctl add_vhost catmaid
sudo rabbitmqctl set_permissions -p catmaid catmaid_user ".*" ".*" ".*"

Now we can configure Celery to talk to this message broker.

Note: To troubleshoot whether messages get received and consumed, it is useful to enable the management plugin
like shown above and then download from the local RabbitMQ server the rabbitmqadmin tool. This allows to interact
with the server and its queues from the command line:

wget http://localhost:15672/cli/rabbitmqadmin
chmod +x rabbitmqadmin
./rabbitmqadmin list queues vhost name node messages message_stats.publish_details.
→˓rate
./rabbitmqadmin -f long -d 3 list queues
./rabbitmqadmin get queue=<queue-name> requeue=true

Celery configuration

The configuration of celery and the message broker happens in the settings.py file. To tell Celery where to expect
which broker, the CELERY_BROKER_URL is used. If the default RabbitMQ port was not changed (5672) and together
with the previously created user and virtual host, the broker URL looks like this:

CELERY_BROKER_URL = 'amqp://catmaid_user:catmaid_pass@localhost:5672/catmaid'

If the defaults don’t work for you, you can read more about the format here.

To specify how many concurrent tasks Celery should execute, you can use the CELERY_WORKER_CONCURRENCY
variable. It defaults to the number of CPU cores, but if you would want to limit it to e.g. a single process, set:

CELERY_WORKER_CONCURRENCY = 1

There are many more configuration options, but these two are the two central ones in our context. You can find a list
of all options along with their description in the Celery documentation. Note that for CATMAID all options have to
have the prefix CELERY_ and have to be upper case. Also, CATMAID currently doesn’t need a result back-end.

In a production environment you’ll want to run the worker in the background as a daemon, but for testing you should
be able to to start the Celery worker like this:

celery -A mysite worker -l info

1.2. Administrator Documentation 89

http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-broker_url
http://docs.celeryproject.org/en/latest/userguide/configuration.html

CATMAID Documentation, Release 2021.12.21

To run Celery as a daemon, you have to integrate in your process management system. The section discussing Super-
visord for process management includes an example on how to do this for Celery and an actual start script for Celery is
shown below. Also, make sure that this Celery daemon process has the permissions to write to the temporary directory
(TMP_DIR).

Message broker access from admin panel

To collect worker events, one has to start Celery workers with the -E flag, e.g.:

celery -A mysite worker -l info -E

All tasks will then be manageable from with Django’s admin interface.

Periodic Tasks

The Celery infrastructure can also be used to execute tasks periodically. To do so, both a Celery worker (see above)
and the Celery beat scheduler have to be started. The scheduler can be run like this:

celery -A mysite beat -l info

The Celery documentation has to say a lot mor about this, but in general periodic tasks are taken from the
CELERY_BEAT_SCHEDULE setting. CATMAID includes two default tasks that are configured to run every night, if
enabled:

At 23:30 Cleanup cropped image stacks
At 23:45 Update project statistics

Like said earlier, to actually execute these tasks, both a Celery worker and a Celery beat scheduler have to be running.
If you in fact use these tasks, you may also want to disable the automatic removal of cropped images with every
download by setting:

Disable automatic clean-up of the cropping tool
CROP_AUTO_CLEAN = False

Both tasks above are defined in CATMAID’s settings_base.py file. New tasks can be added by adding new
entries to the CELERY_BEAT_SCHEDULE dictionary in the settings.py file. For instance, to print the number
of available CATMAID projects once a minute, the following could be added to settings.py:

from celery import shared_task
from celery.schedules import crontab

@shared_task(name='print_project_count')
def print_project_count():
from catmaid.models import Project
n_projects = Project.objects.count()
return 'Number of available projects: {}'.format(n_projects)

CELERY_BEAT_SCHEDULE['print-project-count'] = {
'task': 'print_project_count',
'schedule': crontab(minute='*/1')

}

To specify when and how often the task should be run, datetime.timedelta can be used as well . Other tasks
can be defined in a similar fashion.

90 Chapter 1. Documentation

http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html

CATMAID Documentation, Release 2021.12.21

Besides defining the tasks themselves, the scheduler also requires write permissions to the projects/mysite
directory. By default it will create there a file called celerybeat-schedule to keep track of task execution. To
adjust this file name and path of this file, use the --schedule option for Celery beat.

Supervisord

Supervisord is a process management tool which makes setting up processes very easy. This documentation talks here
in detail about it. A script that can be used with the example provided there would look like this (run-celery.sh
in the example):

#!/bin/bash

Virtualenv location
ENVDIR=/path/to/catmaid/django/env
Django project directory
DJANGODIR=/path/to/catmaid/django/projects
Which settings file should Django use
DJANGO_SETTINGS_MODULE=mysite.settings

echo "Starting celery as `whoami`"

Activate the virtual environment
cd $DJANGODIR
source $ENVDIR/bin/activate
export DJANGO_SETTINGS_MODULE=$DJANGO_SETTINGS_MODULE
export PYTHONPATH=$DJANGODIR:$PYTHONPATH

Run Celery
exec celery -A mysite worker -l info

1.2.10 WebSockets and ASGI

WebSockets allows CATMAID instances to push data to the client even if the client didn’t request it. This can be
useful to inform the client about updates on the server. An example is the notification about new messages, created
e.g. by cropping a sub-volume out of the image data.

Without WebSockets, the CATMAID web front-end will ask the server for updates every minute. Avoiding these
requests especially with many clients lowers the resource requirements of CATMAID. ASGI is the protocol used for
this bi-directional communication and a separate ASGI server (the asynchronous sibling of WSGI). A common choice
for this server is Daphne. It is used below for an example setup.

Note that manage.py runserver supports ASGI out of the box. This however is not meant to be used for
production setups.

All dependencies for this setup are optional and can be installed with:

pip install -r django/requirements-async.txt

1.2. Administrator Documentation 91

https://github.com/django/daphne

CATMAID Documentation, Release 2021.12.21

Setting up an ASGI server

Daphne is already installed as part of CATMAID’s dependencies. To run it use the following command:

daphne -b 127.0.0.1 -p 8001 mysite.asgi:application

This will start a new Daphne server, listening on port 8001 on the localhost network interface. Additionally, worker
instance can be started for support with a higher websocket connection volume or low latency async tasks. See the
example of the Supervisor/Nginx/Daphne setup in the Channels documentation here.

Route ASGI requests to ASGI server

To make the ASGI server available to the client, the public facing webserver has to know about it. Of course it would
be possible to replace existing WSGI setups altogether and use only Daphne for both ASGI and WSGI. There are many
situations where this is impractical and could cause problems. Therefore we recommend to only route ASGI requests
to the ASGI server and let everything else be handled by the regular WSGI server.

To make this easier, CATMAID makes all ASGI endpoints available under:

<CATMAID-URL>/channels/

With this we can tell Nginx (or similar in other webservers) to route all URLs starting with /channels/ to the ASGI
server. This is accomplished by the following location block:

location /channels/ {
proxy_pass http://127.0.0.1:8001/channels/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";

proxy_redirect off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Host $server_name;

}

Be sure to use your sub-directory structure as a prefix, if you use any. Also, if you see errors like “(104:
Connection reset by peer) while reading response header from upstream” make sure
to increase the available file handles on the OS level by setting:

sysctl -w fs.file-max=65536

Make sure to persist this in /etc/sysctl.conf. Additionally, allow Nginx more fie handles by setting this on the
most outer level in /etc/nginx.conf:

worker_rlimit_nofile 10000;

92 Chapter 1. Documentation

https://channels.readthedocs.io/en/latest/deploying.html#example-setups

CATMAID Documentation, Release 2021.12.21

Use RabbitMQ as back-end

The WebSockets layer needs a back-end to share data between different processes. This happens though a separate
database, typically Redis or RabbitMQ. While channels_redis is available and well supported, we so far only
used channels_rabbitmq, because RabbitMQ is also used in other parts of our infrastructure (e.g. Celery). If you
install RabbitMQ make sure to install at least version 5.8. With previous version we experienced connectivity issues.
To have a similar setup, install the channels_rabbitmq layer package into the virtualenv:

pip install -U channels_rabbitmq

If you have installed packages from the dependency list requirements-async.txt, the package doesn’t need to
be installede separately.

Additionally, the folllowing has to be added to settings.py:

CHANNEL_LAYERS = {
"default": {

"BACKEND": "channels_rabbitmq.core.RabbitmqChannelLayer",
"CONFIG": {

"host": "amqp://<user>:<pass>@localhost:5672/asgi"
},

},
}

Adjust the RabbitMQ line above according to your RabbitMQ setup. Details on how to configue a user, password
and vhost (asgi) can be found in the CATMAID documentation about Celery. You can find more information on this
channel layer here.

Process management with Supervisord

Supervisord is used as an example for a process management configuration in other parts of this documentation and
so we use it here to show how the above ASGI configuration can be managed alongside the existing Supervisord
configuration. This assumes a Supervisor process group named “catmaid” is defined in the following file:

/etc/supervisord/conf.d/catmaid.conf

Add the following lines to this file, between the last [program:<name>] section and the [group:catmaid]
section:

[program:catmaid-daphe]
directory = /opt/catmaid/django/projects/
command = /opt/catmaid/django/env/bin/daphne -b 127.0.0.1 -p 8001 mysite.
→˓asgi:application
user = www-data
stdout_logfile = /opt/catmaid/django/projects/mysite/daphne.log
redirect_stderr = true

It is also possible to have additional workers help with the work, should there be many ASGI requests. The details for
Supervisord and Nginx can be found in the example setup in the Channels documentation here.

1.2. Administrator Documentation 93

https://channels.readthedocs.io/en/stable/backends.html#rabbitmq
https://github.com/CJWorkbench/channels_rabbitmq//
https://channels.readthedocs.io/en/latest/deploying.html#example-setups

CATMAID Documentation, Release 2021.12.21

1.2.11 Tracing data caching

For setups with a large amount of tracing data it can be helpful to setup intersection caching, especially for larger fields
of view (FOV). Such caches store precomputed results to spatial queries for the respective container. There currently
two types of node caches (as they are called) available: node-query-cache and node-query-grid-cache.
The former stores intersection results for whole sections and the latter one allows to specify a regular grid
for which results will be precomputed. They are generally populated using the Django management command
catmaid_update_cache_tables. It allows to specify the type of cache using the --cache option, which
can be section or grid.

Caches can be automatically updated on data changes as long as the variable SPATIAL_UPDATE_NOTIFICATIONS
is set to True (disabled by default). If caches are not used on a CATMAID instance with a large amount of tracing
data, it might make sense to disable this setting to improve the speed of operations like skeleton joins.

Both cache types support level of detail (LOD) configurations. This allows to access cached data in terms of a set of
an ordered set of buckets. Being able to access only a part of all caches consistently, allows for quicker browsing of
larger data sets and maintaining more detail on lower zoom levels.

All caches can store the data in either simple JSON text, as JSON database object or a binary msgpack representation.
The msgpack version seems to be the fastest in most situations.

Node Query Cache

For a given orientation this cache stores the intersections with a full section, i.e. all nodes intersecting the plane at
a given depth (Z for XY, etc.). To enable this cache for look-up, add a section like this to your NODE_PROVIDERS
array in the settings.py file:

('cached_msgpack', {
'enabled': True,
'orientation': 'xy',
'step': 40

}),

This will make the back-end look for a msgpack format section cache. If nothing is found, the next available node
provider will be checked. Besides cached_msgpack there is also cached_json and cached_json_text.
The regular node provider options like min_x, max_z, etc. are supported as well. Also this entry indicates the cache
is only defined for the XY orientation and assumes a section thickness of 40 nm. These values are also used as
defaults for the refresh of the cache.

This cache is fast for large field of views that cover most of a section or has to be limited clearly for limit the node
count. Otherwise it can cause too many nodes to be loaded.

To populate the cache, the catmaid_update_cache_tables command can be used for instance like this:

./manage.py catmaid_update_cache_tables --type msgpack --orientation xy \
--step 40 --node-limit 0 --min-z 80000 --max-z 8400 --noclean \
--n-largest-skeletons-limit 1000

This will ask interactively for the project you want to the create the cache for. With this done a whole section query
for each Z in XY orientation is created. The distance between to sections is set to be 40 nm. Also, only a range of Z
values is computed, which is sometimes useful for testing different configurations. The --noclean option ensures
CATMAID isn’t removing existing cached data. Additionally, only the 1000 largest skeletons are displayed.

There are more options available, which can be read on using:

./manage.py catmaid_update_cache_tables --help

94 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Node Query Grid Cache

The grid cache option for the catmaid_update_cache_tables populates a grid made out of cells, each
with the same height, width and depth. For each of these cells a separate spatial query is cached, which also allows
independent updates. In its simplest form, the cache can be enabled for lookup by adding an entry like the following
to the NODE_PROVIDERS array in settings.py:

('cached_msgpack_grid', {
'enabled': True,
'orientation': 'xy',

}),

This will make node queries look for grid caches for the XY orientation. Like with the section cache, there are options
like min_x, max_x, etc. can be used to limit for which volume the cache should be defined.

To create this cache, the catmaid_update_cache_tables management command can be used like this:

./manage.py catmaid_update_cache_tables --project=1 --cache grid \
--type msgpack --cell-width 20000 --cell-height 20000 --cell-depth 40

As a result a uniform msgpack encoded grid cache with cells with the dimensions 20um x 20um x 40 nm (w x h x d).

The optional settings parameter DEFAULT_CACHE_GRID_CELL_WIDTH, DEFAULT_CACHE_GRID_CELL_HEIGHT
and DEFAULT_CACHE_GRID_CELL_DEPTH allow to define defaults for the above management command.

To speed up the computation, it is possible to provide the parameters --jobs and --depth-step. With --jobs
the number of parallel processes can be specified that can be used, which allows parallel cache filling. By default only
a single process is used. With --depth-steps it is possible to reevaluate the number of cells to look at N n times
during the run. For instance, using --depth-steps=2 will do a bounding box query when the process is through
with half of the depth dimension (Z for XY orientation). By default only a single bounding box query will be made.
Updating the bounding box every 100 sections or so can lead to large improvements in cache cell update times. By
default, 10 cache cells are executed per process in a parallel run. This can be adjusted using the --chunk-size
parameter.

Updating caches

Functionality to update cells automatically is available as well. CATMAID uses Postgres’ NOTIFY/LISTEN feature,
which allows for asynchronous event following the pubsub model. To lower the impact on regular tracing opera-
tions (especially joining), an insert/update/delete trigger for treenode and connector will execute a conditional trigger
function, which is set on CATMAID startup.

These events (“catmaid.spatial-update” and “catmaid.dirty-cache”) are disabled by default, because they add slightly
to the query time, even if not used. To enable these database events and allow automatic cache updates, set the
settings.py variable SPATIAL_UPDATE_NOTIFICATIONS = True. Once enabled, these events can be consumed
by third party clients as well.

Cache updates work by running two additional worker processes in the form of management commands: cat-
maid_spatial_update_worker and catmaid_cache_update_worker. The former is responsible for listening to the
“catmaid.spatial-update” Postgres event and adds entries to the table dirty_node_grid_cache_cell for each intersected
cache cell in an enabled grid cache. Upon inserts and updates this table issues the “catmaid-dirty” cache event, which
the second management command will listen to. It’s its responsibility to update the respective cache cells and remove
entries from the dirty table. If single worker processes aren’t enough, more workers need to be started.

When treenodes are created, moved or deleted the database emits the event “catmaid.spatial-update” along with the
start and end node coordinates. The same happens with changed connectors and connector links. Other processes can
use this to asynchronously react to those events without writing to another table or blocking trigger processing in other
ways.

1.2. Administrator Documentation 95

CATMAID Documentation, Release 2021.12.21

Alternatively, it is possible to monitor the catmaid_transaction_info table and see which entries caused
spatial changes and recompute selectively.

Level of detail

The node query result for either a whole section or a single grid cell is not stores as a single big entry in the cache.
Instead it is stored in level of detail (LOD) buckets, each one only allowing a maximum amount of nodes except for
the last one, which takes all remaining nodes. This allows requests that make use of this cache declare they are only
interested in e.g. 5 nodes per grid cell. With small enough grid size dimensions this allows for a uniform control of
reasonable node distributions for each zoom level in the front-end.

To configure LOD relevant parameters during cache constructions the options --lod-levels,
--lod-bucket-size and --lod-strategy can be used with the catmaid_update_cache_tables
management command. The options are optional and have defined defaults.

The first option defines how many LOD levels there should be. By default only one level is defined, which effectively
means there are no levels of detail.

The second option defines how many nodes are allowed in every bucket (except the last one). The default here is a
bucket size of 500.

The last option allows to select between the strategies linear, quadratic and exponential. Each one defines
a way how the bucket size of every bucket will be computed based on the last one. In linear mode, each bucket has the
same size, the one defined with --lod-bucket-size. In quadratic mode, the first bucket has the passed in size,
the following are computed by multiplying the initial bucket size with lod-level ** 2, i.e. the second bucket
allows for the square of the initial bucket size. This mode is also the default. In exponential mode, the initial bucket
size is multiplied with 2 ** lod-level, i.e. buckets grow faster.

To create a usable LOD configuration for a grid cache, the command line could look like this:

./manage.py catmaid_update_cache_tables --project=1 --cache grid \
--type msgpack --cell-width 20000 --cell-height 20000 --cell-depth 40 \
--lod-levels 50 --lod-bucket-size 5 --lod-strategy quadratic

This will start with the first level of detail with a bucket of size 5, then 25, 125 and so on up to 12,500 in bucket 50.

The front-end allows to set a “Level of detail” (LOD) value in the tracing layer settings. By default, this is set to
“max”, which causes all LOD levels to be included. Setting this to 1, will include only the first level. The font-end
also allows to map zoom levels to particular LOD levels. This allows flexible zooming behavior with adaptive display
limits using cached data.

1.2.12 History and provenance tracking

CATMAID keeps track of all changes to its database tables. If a database row is changed, all old values will be stored
in a so called history table together with a time range representing the datas validity. This time period is represented
by the half-open interval [start, end) for which a row is valid starting from time point start and is valid until
(but not including!) end. Keeping track of changes is managed entirely by the database. Besides disabling or enabling
history tracking, the only thing Django can change, is providing a label for the current transaction, which is useful to
give some semantics to a set of database changes. Currently, all CATMAID tables except treenode_edge and a
few others are versioned, which can typically be regenerated. CATMAID also keeps track of changes in most non-
CATMAID tables, that is the tables used by Django and Django applications we use, except for asynchronous task
related Celery and Kombu.

96 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

History tables

Each versioned table has a so called history table associated, indicated by the __history suffix (e.g. project
and project__history). A convenient view that includes live and history data, is available with the
__with_history suffix. This is simply a union between both tables. A double underscore is used to minimize
collisions with existing names. This history table is populated automatically through database triggers: whenever data
in a live table is updated or deleted, the history table will be be updated. It contains a complete copy of every historic
version of each row and specifies a time period for its validity. This time period is called “system time” and is repre-
sented through the additional sys_period column in each history table. This time range spans typically the time of
the last edition (or creation) to the time of change. If a live table doesn’t store such a start time stamp, a separate 1:1
tracking table, which keeps track of editions, is created and managed. Such tracking tables are named like the original
table plus the suffix __tracking.

CATMAID’s history system has one requirement for tables it keeps track of: a single column primary key has to be
used. Extending it to support multi-column primary keys is possible, not needed at the moment.

By default, all tables of CATMAID itself plus the user table (a Django table) are set up to track history. To
enable this for other tables (e.g. if new tables are added), the database function create_history_table(
live_table) can be used. This will create the history table and sets up all required triggers. Likewise, there
is a drop_history_table(live_table) function, which makes sure a history table and triggers are re-
moved cleanly if this is wanted. The table catmaid_history_table keeps track of all currently active history
tables.

Transaction log

Each endpoint of the CATMAID API that changes data is supposed to leave a log entry in the transaction log. This
way, database changes can be associated with a particular back-end operation. Like explained in the contributor docu-
mentation, data changing endpoints in urls.py are wrapped in a record_view decorator, which is parameterized
with a label. This label is used by the back-end to find affected tables of a change.

Disabling history tracking

While history tracking is important and in most situations desirable, there are a few situations where it would ben-
eficial to disable it (e.g. some database maintenance tasks, potentially more performance). To do this the setting
HISTORY_TRACKING can be set to False, i.e. add the following line to the settings.py file:

HISTORY_TRACKING = False

With the next restart of CATMAID, history tracking will be disabled. Likewise, it can be enabled again by setting
HISTORY_TRACKING = True (or removing the line). If the history system is enabled after it was disabled (i.e.
database triggers have to be created), all tracking tables are updated to match the live data again.

Schema migration

In case there are schema changes to any of the tracked live tables, the history tables have to be changed as well and
triggers have to be regenerated. Every column change of a table has to be reflected in the history triggers and tables.
Ideally, this would be implemented with DDL triggers in Postgres, which is currentl only possible using a custom C
extension. Because this would make CATMAID harder to install, this history table update involves some manual work
when creating database migrations that change table columns. Before the actual migration can happen, the history
system has to be disabled:

1.2. Administrator Documentation 97

CATMAID Documentation, Release 2021.12.21

SELECT disable_history_tracking_for_table('<table-name>'::regclass,
get_history_table_name('<tablel-name>'::regclass));

SELECT drop_history_view_for_table('<table-name>'::regclass);

Depending on how the columns are changed, different scenarios are expected to happen:

• If a column is added, a new history table column is added.

• If a column is removed, the equivalent history table column is removed as well.

• If a column is renamed, no copy is performed and the renaming is applied directly to the history table.

• If the data type of a column changes, the history table column data should be updated to the new data type as
well, if possible. If the original data needs to be preserved, the original history column is renamed (append
first free “_n” suffix) and the new column is added. If no information loss is present (e.g. float to double), the
original history column should however just be changed without backup to save storage space.

After both the live table and the history table have been updated, history tracking has to be enabled again:

SELECT create_history_view_for_table('<table-name>'::regclass);
SELECT enable_history_tracking_for_table('<table-name>'::regclass,

get_history_table_name('<table-name>'::regclass), FALSE);

In addition to column changes on existing tables, operations on whole tables are handled like this:

• If a table is removed, the history table and history triggers need to be removed as well:

SELECT disable_history_tracking_for_table('<table-name>'::regclass,
get_history_table_name('<tablel-name>'::regclass));

SELECT drop_history_view_for_table('<table-name>'::regclass);
SELECT drop_history_table('<table-name>'::regclass);

• If a table is added and its history should be tracked, history tracking has to be enabled for it. To
do this, call SELECT create_history_table(<tablename>::regclass, <timecolumn>,
<txidcolumn>);, with <timecolumn> being an edit reference time and <txidcolumn> being a col-
umn tracking a row’s transaction ID. For most CATMAID tables those parameters are 'edition_time' and
'txid', respectively. If both <timecolumn> and <txid> are NULL, a tracking table will be created auto-
matically. Only providing one of the two is currently not supported. To let CATMAID know if you expect this
table to have a history table, add the table to the appropriate list in the HistoryTableTest class. This way
you can also mark a table as not versioned.

• If a live table is renamed, the history table is not renamed automatically, use the function
history_table_name(<tablename>::regclass) to create the new name.

1.2.13 Data replication

CATMAID is designed for collaborative work, possibly from many different places around the world. The latency
that users experience to load data increases with the distance they are away from both the server hosting a CATMAID
instance and the source of the image data. In order to speed up read access to the data, both image data and the
CATMAID database can be replicated (mirrored) to other locations, that would be closer to the users. Below, both
image stack mirrors and database replication is discussed in more detail.

98 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Stack mirrors

Multiple image mirrors can be configured for each stack in CATMAID through the admin interface. All stack mirrors
are available to the front-end when loading a particular stack. If its canary location is reachable, the stack is used.
Otherwise the next one is tried and so on. This makes it possible to have also network internal mirrors for faster access,
parallel to slower public hosts.

Database replication

The CATMAID front-end can read data from different servers. This is mainly useful for large amounts of data, e.g.
neuron reconstructions, meshes or large connectivity matrices. For writing and reading of most small information,
CATMAID will still talk to the primary server though. The replication server (replica) will mirror data from the
primary server and update automatically using the physical replication capabilities of Postgres. Still, the replication
server needs to run a regular CATMAID instance (possibly through Docker), which effectively is read-only.

Physical replication in Postgres performs a byte-by-byte copy of the database, based on the Write Ahead Log (WAL).
Therefore it is important that both the primary server and all replicas run the same Postgres version. CATMAID
requires Postgres 12 at the moment.

Reachability and secure communication

Replica servers need to be able to log in to the primary Postgres server. This means there needs to be an open port
that makes the primary server reachable from the replicas. This could mean opening a port in the server or network
firewall, depending on the setup. If the firewall can be configured to only allow incoming requests from the particular
replica IP, then is typically a good idea to do for the sake of security. One other aspect is, that it often reduces server
load if non-standard ports are used (to lower random login requests), especially if popular applications like Postgres
are involved. For instance, Postgres’ default port is 5432, so a pragmatic unassigned public port might be 7432. To
allow Postgres to only listen on the local loopback interface and route incoming traffic on port 7432, the following
stream block can be used in an Nginx configuration on the primary server, after the respective streaming module
was loaded:

Enable TCP streaming
load_module modules/ngx_stream_module.so;

stream {
upstream postgres_db {
server 127.0.0.1:5432;

}

server {
Forward this port to the internal Postgres database. This is
used for the replication user.
listen 7432;
proxy_pass postgres_db;

}
}

In case Postgres should be reachable directly, make sure the listen_addresses setting in postgresql.conf
is set to your network interface correctly. With a port forwarding like above, this is not needed.

With Postgres being reachable from the outside, the primary server can now be configured for replication. Given that
data is transmitted to replication servers, it is a good idea to encrypt this traffic. For this a self-signed certificate can be
used, but if the server has already a certificate, this can be used as well. The private key and certificate need to readable
by Postgres, which is typically run by the postgres user. Then SSL can be enabled in the postgresql.conf
file:

1.2. Administrator Documentation 99

CATMAID Documentation, Release 2021.12.21

ssl = on
ssl_cert_file = '/etc/ssl/postgresql/cert/server.crt'
ssl_key_file = '/etc/ssl/postgresql/private/server.key'

Let the point to the respective files on your system and make sure Postgres can read them.

Configure the primary

If replicas can connect to Postgres, they need to login. Use a dedicated replication user for this. Login to Postgres
(sudo -u postgres psql) and create a new user, enable proper password encryption and set a strong password:

CREATE ROLE replication_user WITH REPLICATION LOGIN;
SET password_encryption = 'scram-sha-256';
\password replication_user

Next, Postgres needs to be told to use the WAL for replication. Edit postgresql.conf and apply the following
settings:

wal_level = replica
max_wal_senders = 3 # max number of walsender processes
wal_keep_segments = 64 # in logfile segments, 16MB each; 0 disables

The replica value for the wal_level is the default. The number of kept WAL segments should be enough for
most setups, but on write heavy setups, it is advisable to also enable WAL archiving, using the placeholders %p for the
full path of the archive file and %f for the filename only:

archive_mode = on
archive_command = 'rsync -a %p postgres@replica:/opt/postgresql_wal/%f'

This copies the WAL segments to a place that has to be accessible by all replicas. If e.g. rsync is used like above,
make sure to setup SSH access by public key. On most setup, WAL archiving is likely not needed though.

The last step on the primary server is to allow the replication user to login. Add the following line to your pg_hba.
conf file:

hostssl replication replication_user xxx.xxx.xxx.xxx/yy scram-sha-256

Replace xxx.xxx.xxx.xxx/yy with the IP of the replica or the subnet of multiple replicas are used.

Finally, Postgres on the primary server has to be restarted.

Configure the replica

With the primary server ready, the replica has to be configured as well. First, the replica Postgres has to be stopped.
Edit postgresql.conf and give the same (or similar, depending on hardware) configuration as on the primary.
This way, this server can act as a failover server of the primary goes down. Also, add the following line:

hot_standby = on

Next the Postgres data directory (data_directory in postgresql.conf) will be prepared for the replication.
If it contains your postgresql.conf, pg_hba.conf and/or certificates, make a backup of those files. Now this
is done, delete all files in this data directory. Warning: this will remove all databases in this Postgres instance!

Now the data of the primary server has to be copied over using pg_basebackup. This has to be done as the
postgres user:

100 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

sudo -u postgres pg_basebackup -h my.primary.db.xyz -p 7432 \
-P --checkpoint=fast -U replication_user -D /var/lib/postgresql/12/main/

Assuming /var/lib/postgresql/12/main/ is our data directory and my.primry.db.xyz is the primary
database server, listening on port 7432, this command should ask you for the password of the replication user on the
primary and print progress information. This will take a while, depending on your database size, because all the data
from the primary server is copied over.

Of course the replica shouldn’t allow general write-operations to its replicated databases. Instead it should follow the
primary. This is done by adding the following settings to your postgresql.conf file:

primary_conninfo = 'host=my.primary.db.xyz port=7432 user=replication_user
→˓password=<password>'
promote_trigger_file = '/var/lib/postgresql/12/main/primary.now'
#restore_command = 'cp /opt/postgresql_wal/%f "%p"

To promote a standby/replica cluster to a primary, create the file primary.now in the Postgres data directory (/
var/lib/postgresql/12/main/ in this example). This file needs to be owned by the postgres user and the
postgres group.

This configuration makes Postgres start as a standby (read-only) server. It will automatically contact the primary server
to stay up-to-date until it is promoted to a primary using a file like primary.now or using tools like pg_promote.

Note: In Postgres 11, the setup was done by creating a file named recovery.conf in the Postgres data directory
with the following content, instead of the postgresql.conf changes above):

primary_conninfo = ‘host=my.primary.db.xyz port=7432 user=replication_user password=<password>’ trigger_file
= ‘/var/lib/postgresql/11/main/primary.now’ #restore_command = ‘cp /opt/postgresql_wal/%f “%p” standby_mode =
‘on’

This file needs to be owned by the postgres user and the postgres group.

Also, in Postgres 11, if the trigger_file is created on the file system, the replica is promoted to a primary.

Now the replica can be started. A line similar to the following should show up in the log:

started streaming WAL from primary at FD6/EB000000 on timeline 1

On the primary server, replicas should be visible in a query like this:

select * from pg_stat_activity where usename = 'replication_user';

This provides a basic replication setup. It might be useful to also look at PITR (backups) of Postgres. This
would cause a copy of each WAL file can be created (and also used on the replica). This can be done using the
archive_command setting on the primary or the replica. The restore_command can then be used to actually
restore the backup into a data directory. The database backup documentation page has more details on this. This
will for instance also allow to bring a replica server “up to speed” (get to the current database version) after a longer
downtime with the WAL being already removed in the primary.

1.2. Administrator Documentation 101

CATMAID Documentation, Release 2021.12.21

Testing the setup

In order to get an idea what the replication status of both primary and replica are, the following commands can be used
as a starting point.

On the Primary:

SELECT * FROM pg_stat_replication;

And on the replica:

SELECT * FROM pg_stat_wal_receiver;

Configure CATMAID

To load all neuron reconstruction data from a replica instead of the primary server, the replica has to be set up as a
fully working read-only CATMAID instance. Being read-only doesn’t need to be configured separately, because the
replica database doesn’t allow writes anyway.

With this done, the main CATMAID instance can now be configured to use the replica server for read-only data. To
do so, two different aspects have to be configured in the Settings Widget. First, the remote CATMAID server has to be
added as “Other CATMAID instance”. Once this is done, the Read-only mirror index setting in the Tracing Overlay
section can be set to the 1-based index of the entry in the list of other CATMAID instances. With this, the tracing layer
will use the respective remote server to load tracing data except for the active node. Empty values, -1 or 0 will disable
the use of a database replica.

While the replica’s CATMAID front-end isn’t meant to be accessed directly, if one wanted to do that, it seems possible
by using memcached for the session storage and configuring CATMAID the following additional settings:

EMAIL_BACKEND = 'django.core.mail.backends.dummy.EmailBackend'

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': '127.0.0.1:11211',
'OPTIONS': {

Allow maximum object size of 10MB
'server_max_value_length': 1024 * 1024 * 10,

}
}

}

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'

INSTALLED_APPS += tuple(['nolastlogin'])
NO_UPDATE_LAST_LOGIN = True

Should that not work for some reason, a file based session cache might be an option, too:

SESSION_ENGINE = 'django.contrib.sessions.backends.file'

102 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

1.2.14 Postgres administration

This is a collection of some common and uncommen database administration tasks.

Create a read-only database user

This is useful for some independent analysis tasks. Assuming the CATMAID database is called catmaid and the
read-only user should be called catmaid_read_only, login to Postgres and run the following:

CREATE ROLE catmaid_read_only WITH LOGIN PASSWORD 'a-very-strong-password'
→˓NOSUPERUSER INHERIT NOCREATEDB NOCREATEROLE NOREPLICATION VALID UNTIL 'infinity';
\c catmaid
GRANT CONNECT ON DATABASE catmaid TO catmaid_read_only;
GRANT USAGE ON SCHEMA public TO catmaid_read_only;
GRANT SELECT ON ALL TABLES IN SCHEMA public TO catmaid_read_only;
GRANT SELECT ON ALL SEQUENCES IN SCHEMA public TO catmaid_read_only;
GRANT EXECUTE ON ALL FUNCTIONS IN SCHEMA public to catmaid_read_only;
ALTER DEFAULT PRIVILEGES IN SCHEMA public GRANT SELECT ON TABLES TO catmaid_read_only;

Copy data from other (CATMAID) database

Postgres makes it possible to work with other databases directly using its foreign data wrappers. This alles for instance
to copy user accounts or tracing data from one CATMAID intance to another on the database level. In order to use
data from other databases, one has to create a foreign data wrapper first:

CREATE EXTENSION postgres_fdw;
CREATE SCHEMA remote_catmaid_fdw;
CREATE SERVER remote_catmaid FOREIGN DATA WRAPPER postgres_fdw

OPTIONS (dbname '<remote-catmaid-db>', port '5432', host 'localhost');
CREATE USER MAPPING for CURRENT_USER SERVER remote_catmaid

OPTIONS (user '<catmaid-user>', password '<catmaid-pass>');

With this individual tables (or alternatively all) can be imported into the local database:

IMPORT FOREIGN SCHEMA public LIMIT TO (auth_user, auth_group,
auth_user_group, auth_user_groups, catmaid_userprofile,
guardian_userobjectpermission, guardian_groupobjectpermission)

FROM SERVER remote_catmaid INTO remote_catmaid_fdw;

Now it’s possible to select data from the remote source:

SELECT * from remote_catmaid_fdw.auth_user;

Example of copying user accounts across instances

To check if local users have the same ID/name combinations as remote users one could now do:

SELECT rau.*, au.* FROM remote_catmaid_fdw.auth_user rau
JOIN auth_user au

ON au.id = rau.id
WHERE au.username <> rau.username;

SELECT rag.*, ag.* FROM remote_catmaid_fdw.auth_group rag

(continues on next page)

1.2. Administrator Documentation 103

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

JOIN auth_group ag
ON ag.id = rag.id

WHERE ag.name <> rag.name;

SELECT raug.*, aug.* FROM remote_catmaid_fdw.auth_user_groups raug
JOIN auth_user_groups aug

ON aug.id = raug.id
WHERE aug.user_id <> raug.user_id OR aug.group_id <> raug.group_id;

SELECT rcup.*, cup.* FROM remote_catmaid_fdw.catmaid_userprofile rcup
JOIN catmaid_userprofile cup

ON cup.id = rcup.id
WHERE cup.user_id <> rcup.user_id;

SELECT rguop.*, guop.* FROM remote_catmaid_fdw.guardian_userobjectpermission rguop
JOIN guardian_userobjectpermission guop

ON guop.id = rguop.id
WHERE guop.user_id <> rguop.user_id

OR guop.object_pk <> rguop.object_pk;

SELECT rggop.*, ggop.* FROM remote_catmaid_fdw.guardian_groupobjectpermission rggop
JOIN guardian_groupobjectpermission ggop

ON ggop.id = rggop.id
WHERE ggop.group_id <> rggop.group_id

OR ggop.object_pk <> rggop.object_pk;

If these and similar queries return empty, remote data can be imported without conflicts. If results are returned, a
pragmatic and reasonably safe option would be to move their IDs into negative number space, e.g:

UPDATE auth_user_groups SET id = -id WHERE id IN (
SELECT aug.id FROM remote_catmaid_fdw.auth_user_groups raug
JOIN auth_user_groups aug
ON aug.id = raug.id
WHERE aug.user_id <> raug.user_id OR aug.group_id <> raug.group_id);

To see which users, groups, userprofiles and permissions would be imported, use:

SELECT rau.* FROM remote_catmaid_fdw.auth_user rau
LEFT JOIN auth_user au ON au.id = rau.id
WHERE au.id IS NULL;

SELECT * FROM remote_catmaid_fdw.auth_group rag
LEFT JOIN auth_group ag ON ag.id = rag.id
WHERE ag.id IS NULL;

SELECT * FROM remote_catmaid_fdw.auth_user_groups raug
LEFT JOIN auth_user_groups aug

ON aug.id = raug.id
WHERE aug.id IS NULL

OR aug.user_id <> raug.user_id
or aug.group_id <> raug.group_id;

SELECT * FROM remote_catmaid_fdw.catmaid_userprofile rcup
LEFT JOIN catmaid_userprofile cup

ON cup.id = rcup.id
WHERE cup.id IS NULL;

(continues on next page)

104 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

SELECT * FROM remote_catmaid_fdw.guardian_userobjectpermission rguop
LEFT JOIN guardian_userobjectpermission guop

ON guop.id = rguop.id
WHERE guop.id IS NULL;

SELECT * FROM remote_catmaid_fdw.guardian_groupobjectpermission rggop
LEFT JOIN guardian_groupobjectpermission ggop

ON ggop.id = rggop.id
WHERE ggop.id IS NULL;

If this matches the expectation, this can now be imported:

INSERT INTO auth_user
SELECT rau.* FROM remote_catmaid_fdw.auth_user rau
LEFT JOIN auth_user au ON au.id = rau.id
WHERE au.id IS NULL;

INSERT INTO auth_group
SELECT rag.* FROM remote_catmaid_fdw.auth_group rag
LEFT JOIN auth_group ag ON ag.id = rag.id
WHERE ag.id IS NULL;

INSERT INTO auth_user_groups
SELECT raug.* FROM remote_catmaid_fdw.auth_user_groups raug
LEFT JOIN auth_user_groups aug

ON aug.id = raug.id
WHERE aug.id IS NULL;

INSERT INTO catmaid_userprofile
SELECT rcup.* FROM remote_catmaid_fdw.catmaid_userprofile rcup
LEFT JOIN catmaid_userprofile cup

ON cup.id = rcup.id
WHERE cup.id IS NULL;

INSERT INTO guardian_userobjectpermission
SELECT rguop.* FROM remote_catmaid_fdw.guardian_userobjectpermission rguop
LEFT JOIN guardian_userobjectpermission guop

ON guop.id = rguop.id
WHERE guop.id IS NULL;

INSERT INTO guardian_groupobjectpermission
SELECT rggop.* FROM remote_catmaid_fdw.guardian_groupobjectpermission rggop
LEFT JOIN guardian_groupobjectpermission ggop

ON ggop.id = rggop.id
WHERE ggop.id IS NULL;

In case such imports are performed, it is important to reset the ID sequence coutners for all modified tables if they
haven’t been set manually to something else already:

SELECT setval('auth_user_id_seq', coalesce(max("id"), 1), max("id") IS NOT null) FROM
→˓auth_user;
SELECT setval('auth_group_id_seq', coalesce(max("id"), 1), max("id") IS NOT null)
→˓FROM auth_group;
SELECT setval('auth_user_groups_id_seq', coalesce(max("id"), 1), max("id") IS NOT
→˓null) FROM auth_user_groups;

(continues on next page)

1.2. Administrator Documentation 105

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

SELECT setval('catmaid_userprofile_id_seq', coalesce(max("id"), 1), max("id") IS NOT
→˓null) FROM catmaid_userprofile;
SELECT setval('guardian_userobjectpermission_id_seq', coalesce(max("id"), 1), max("id
→˓") IS NOT null) FROM guardian_userobjectpermission;
SELECT setval('guardian_groupobjectpermission_id_seq', coalesce(max("id"), 1), max("id
→˓") IS NOT null) FROM guardian_groupobjectpermission;

Alterantively, if such a sync operation is happening repeatedly, it can be convenient to set the ID sequences of the
target database to a different range, e.g. to start new IDs only with enough headroom to the repeated imports.

1.2.15 Docker

With the help of Docker and Docker-compose it is possible to run CATMAID without much manual setup involved.
With Docker alone, CATMAID will be available as demo locally, but no added data is persisted after a restart. With
Docker-compose however, it is possible to keep added data. In both variants, a superuser is created by default with the
username “admin” and the password “admin”.

CATMAID demo with Docker

If you want to try CATMAID before performing a complete installation, a Docker image is available containing
a running basic CATMAID installation. Docker is a system for distributing programs, dependencies, and system
configuration in containers that work like lightweight virtual machines.

After installing Docker, download and run the CATMAID image:

docker run -p 8000:80 --name catmaid catmaid/catmaid-standalone

Navigate your browser to http://localhost:8000 and you should see the CATMAID landing page. You can log in as
a superuser with username “admin” and password “admin”. The Docker image contains a few example CATMAID
projects and stacks, but you can add your own through the admin page.

Warning: Make sure you change the default password of the admin user.

Warning: Any users, projects, stacks or annotations you add to the running Docker container will by default be
lost when you next run it. To save these changes, you must commit them with docker. However, this is not a best
practice for using Docker, and we currently do not recommend the CATMAID Docker image for production use.

Persistence with Docker compose

Using Docker-compose is an alternative to the demo mode described above. With Docker-compose, the database,
the webserver and CATMAID run in different containers. The database container stores the database outside of the
container so it is kept over restarts. To run this setup, first install install Docker-compose:

sudo sh -c "curl -L https://github.com/docker/compose/releases/download/1.24.1/docker-
→˓compose-`uname -s`-`uname -m` > /usr/local/bin/docker-compose"
sudo chmod +x /usr/local/bin/docker-compose
sudo sh -c "curl -L https://raw.githubusercontent.com/docker/compose/1.24.1/contrib/
→˓completion/bash/docker-compose > /etc/bash_completion.d/docker-compose"

106 Chapter 1. Documentation

https://www.docker.com/
http://localhost:8000
http://localhost:8000/admin
https://docs.docker.com/engine/reference/commandline/commit/

CATMAID Documentation, Release 2021.12.21

Next clone the catmaid-compose repo to a convenient location. Note that by default the database will be stored in
this location, too:

git clone https://github.com/catmaid/catmaid-docker.git
cd catmaid-docker

The database (and static files) will be saved outside of the containers in the folder volumes. This allows to optionally
create a symlink with this name to a different location for the database.

Run containers:

docker-compose up

Navigate your browser to http://localhost:8000 and you should see the CATMAID landing page. You can log in as a
superuser with username “admin” and password “admin”. The Docker image contains a few example projects, which
are added by default. To disable these, set CM_EXAMPLE_PROJECTS=false in the environment section of the
app service (in docker-compose.yaml) before starting the containers for the first time. This is also the place
where database details can be configured.

Additionally, the environment option CM_IMPORTED_SKELETON_FILE_MAXIMUM_SIZE can be used to set the
maximum allowed import file size in bytes.

Warning: Make sure you change the default password of the admin user.

Start on boot

This is easiest done with systemd. Create a new service file, e.g. /etc/systemd/system/catmaid.
service:

[Unit]
Description=CATMAID
Requires=docker.service
After=docker.service

[Service]
Restart=always
ExecStart=/usr/bin/docker-compose -f /home/catmaid/catmaid/docker-compose.yml up
ExecStop=/usr/bin/docker-compose -f /home/catmaid/catmaid/docker-compose.yml stop

[Install]
WantedBy=multi-user.target

This still requires manual rebuilds during updates.

1.2. Administrator Documentation 107

http://localhost:8000

CATMAID Documentation, Release 2021.12.21

Updating docker images

Docker images are not updated automatically. Which images are currently locally available can be checked with:

docker images

Which images containers are currently running can be seen with:

docker ps

Depending on whether a standalone docker image or a docker-compose setup is used, updating is done slighly differ-
ently.

Standalone docker

If you want to persist changes from the currently running container, you can export the database first:

docker exec -u postgres catmaid /usr/bin/pg_dumpall --clean -U postgres > backup.pgsql

And if you want to make sure you can go back to the old version, you could commit a new docker images with the
current state:

docker commit catmaid catmaid:old

Before updating the images, make sure to stop the containers using docker stop catmaid (if you didn’t used
--name with docker run, use the container ID instead of “catmaid”).

First update the CATMAID base image:

docker pull catmaid/catmaid

Then, to update catmaid-standalone (regular Docker) use:

docker pull catmaid/catmaid-standalone

If no previous state should be persisted, the docker container can be started normally again:

docker run -p 8000:80 --name catmaid catmaid/catmaid-standalone

If you however want to start the new container from a previously saved database dump, set the DB_FIXTURE variable
to true and pipe the backup file to the docker run command:

cat backup.pgsql | docker run -p 8000:80 -i -e DB_FIXTURE=true --name catmaid catmaid/
→˓catmaid-standalone

The database will then be initialized with the data from the pg_dumpall image in the file backup.pgsql, created
above. The Docker image will automatically apply all missing database migrations.

108 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Docker-compose

Before updating the docker images, the database should be backed up. The easiest way to do this and also be able to
quickly restore in case something goes wrong, is to perform a file based copy of the volumes folder after stopping the
database. To stop CATMAID and the database, call the following command from the catmaid-docker directory
(containing the docker-compose.yml file):

docker-compose stop

And then copy the complete volumes folder:

sudo cp -r volumes volumes.backup

Next update your local copy of the docker-compose repository:

git pull origin master

Then update your docker images:

docker-compose pull

Finally the docker containers have to be built and started again:

docker-compose up --build -d

In case a newly pulled docker image introduces a new Postgres version, CATMAID’s docker-compose start-up script
will detect this and abort the container execution with a warning. This warning says that an automatic update of the
data files can be performed, but this will only be done if DB_UPDATE=true is set in the docker-compose.
yml file. If you don’t see such a warning, the update should be successful. If you see this warning, a few addi-
tional steps are required. First DB_UPDATE=true has to be added as environment variable of the db app in the
docker-compose.yml file. The docker-compose setup needs then to be rebuilt and run:

docker-compose up --build -d

After a successful upgrade, the DB_UPDATE variable should be set to false again, to not accidentally upgrade the
data files without ensuring a back-up has been made.

In order to check logs of the running containers, docker-compose logs can be useful.

Starting docker-compose as systemd service

If placed in the /etc/systemd/system folder, the file catmaid.service could look like this and allow the
container management through systemd:

[Unit]
Description=CATMAID
Requires=docker.service
After=docker.service

[Service]
Restart=always
ExecStart=/usr/bin/docker-compose -f /path/to/catmaid-docker-compose/docker-compose.
→˓yml up
ExecStop=/usr/bin/docker-compose -f /path/to/catmaid-docker-compose/docker-compose.
→˓yml stop

(continues on next page)

1.2. Administrator Documentation 109

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

[Install]
WantedBy=multi-user.target

Backup and restore of Docker Postgres databases

In order to create simple pg_dumpall backups from the host, the following line executed as a cron job, can be
used to create backups regularly:

docker exec -t <container-name> pg_dumpall -c -U catmaid > /data/backup/catmaid/
→˓postgresql/$(TZ='America/New_York' date +%Y-%m-%d-%H-%M)-catmaid-db.sql

The <container-name> is catmaid for the regular docker setup, and catmaid_db_1 for the
docker-compose setup. Also not that this expectes the folder /data/backup/catmaid/postgresql/
to be writable.

In order to restore such a backup, a line similar to this can be used:

cat <backup.sql> | docker exec -i <container-name>-db-container psql -U catmaid

Notes on shared memory in Docker

Due to the low default allowed shared memory in Docker containers (64MB), bigger instances might run into an error
similar to this:

Traceback (most recent call last):
[...]
psycopg2.OperationalError: could not resize shared memory segment
"/PostgreSQL.909036009" to 70019784 bytes: No space left on device

To fix this, the allowed shared memory (which is what Postgres makes heavy use of) can be increased. When running
docker directly, add the --shm-size=2g option. If docker-compose is in use, add shm_size: '2gb'
to the build context of the database (db container). It requires at least v3.5 of the docker-compose file format:

version: '3.5'

services:
build:
context: db

shm_size: '2gb' # build
shm_size: '2gb' # run-time

Note that the db identifier moves from the build: line to the new context: line.

For more available shared memory, increase the example of 2gb.

110 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Building a CATMAID Docker image

Make sure to have a clean working directory, because everything in the CATMAID directory tree will be included in
the Docker image. The easiest way to make sure of this is to clone the CATMAID repository into a new folder and
move to the branch to build an image for. Then, build the image with the correct tag, login to DockerHub and push it:

git clone git@github.com:catmaid/CATMAID.git catmaid-docker
cd catmaid-docker
git checkout -b origin/dev
docker build -t catmaid/catmaid:latest .
docker login
docker push catmaid/catmaid:latest

Parameterizing Docker containers

Both the standalone Docker container and the docker-compose setup can be parameterized with various options. Some
of them have already been discussed above. Generally, Docker parameters are provided as environment variables.
For the regular Docker setup this happens by adding -e KEY=VALUE parameters to the docker run call. For
docker-compose, the respective entries have to be added to the docker-compose.yaml file. The available
settings can broadly be categorized in infrastructure settings (database, webserver) and CATMAID settings.

The following infrastructure settings are available:

DB_HOST The dabase hostname. Default: localhost

DB_PORT The port the database is listening on. Default: 5432

DB_NAME The name of the CATMAID database. Default: catmaid

DB_USER The user as who to connect to the databae. Default: catmaid_user

DB_PASS The password of the database user. Default: catmaid_password. Please change this!

DB_CONNECTIONS The maximum number of allowed database connections. Default: 50

DB_TUNE Whether the contaienr should try to tune the database on initial startup. Default: true

DB_FORCE_TUNE Whether the next start of the container should include a database tuning update. Default: false

DB_FIXTURE Whether or not to expect raw SQL as input on stdin. This can be piped directly to the database.
Assuming there is simple database dump with text SQL commands in the file backup.sql, the following com-
mand can be used to load it into the container database: cat backup.sql | docker run -i -e
DB_FIXTURE=true --name catmaid catmaid/catmaid-standalone. Default: false.

INSTANCE_MEMORY The amount of memory, the docker instance should have available. This is the basis for tweak-
ing some database parameters. By default, this is estimated automatically, but can be overridden in terms of
megabtes of memory, i.e. a value of 4096 means 4GB.

The following CATMAID settings are available. If anything, the administration password should be changed to some-
thing more secure (CM_INITIAL_ADMIN_PASS).

CM_INITIAL_ADMIN_USER This admin user is created during initial setup. Default: admin

CM_INITIAL_ADMIN_PASS This initial password of the admin user defined in CM_INITIAL_ADMIN_USER.
This should be changed to something more secure! Default: admin

CM_INITIAL_ADMIN_EMAIL This initial email address of the admin user defined in
CM_INITIAL_ADMIN_USER. Default: admin@localhost.local

CM_INITIAL_ADMIN_FIRST_NAME The first name of the admin user defined in CM_INITIAL_ADMIN_USER.
Default: Super

1.2. Administrator Documentation 111

mailto:admin@localhost.local

CATMAID Documentation, Release 2021.12.21

CM_INITIAL_ADMIN_LAST_NAME The last name of the admin user defined in CM_INITIAL_ADMIN_USER.
Default: User

CM_DEBUG Whether or not to run CATMAID in debug mode. Default: false

CM_EXAMPLE_PROJECTS Whether or not to setup example projects. Default: true

CM_INITIAL_PROJECTS A set of project and stack definitions that the container will set up initiall. The expected
format is JSON as it is returned by the /projects/export API endpoint. This can be a multiline environ-
ment variable, but Docker is somewhat picky about how this is provided.

Consider the following JSON representation of a Drosophila larva L1 project, stored in the file
larva-l1-project.json:

[{
"project": {

"title": "L1 CNS",
"stacks": [{

"title": "L1 CNS",
"dimension": "(28128, 31840, 4841)",
"mirrors": [{
"fileextension": "jpg",
"position": 3,
"tile_source_type": 4,
"tile_height": 512,
"tile_width": 512,
"title": "Example tiles",
"url": "https://example.com/ssd-tiles/"

}],
"resolution": "(3.8,3.8,50)",
"translation": "(0,0,6050)"

}]
}

}]

This can now be used in the CM_INITIAL_PROJECTS environment variable like this as a docker run
parameter:

-e CM_INITIAL_PROJECTS="$(cat larva-l1-project.json)"

Alterantively, such a JSON block could be included also directly into the call on the command line:

docker run ... -e CM_INITIAL_PROJECTS='[{
"project": {

...
}

}]' -e ...

CM_INITIAL_PROJECTS_IMPORT_PARAMS The parameter string provided to the
catmaid_import_projects management command by the importer to import the projects and
stacks provided in CM_INITIAL_PROJECTS. This can for instance be give the anonymous user read
permissions on the imported data:

CM_INITIAL_PROJECTS_IMPORT_PARAMS="--permission user:AnonymousUser:can_browse"

CM_IMPORTED_SKELETON_FILE_MAXIMUM_SIZE The maximum allowed file size for skeletons that are im-
ported through the API into the container. In Bytes.

CM_HOST The network interface in the container, the CATMAID application server should be listening on. Default:
0.0.0.0 (all interfaces).

112 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

CM_PORT The network port in the container, the CATMAID application server should be listening on. Default: 8000

CM_FORCE_CONFIG_UPDATE Whether the CATMAID configurating should be updated on container start. Nor-
mally, the settings are updated on initial container start. Default: false

CM_WRITEABLE_PATH Where CATMAID can expect to be able to write data. This can be useful to make this folder
accessible through a Docker volume. Default: “/tmp”.

CM_NODE_LIMIT The maximum number of reconstruction nodes that should be loaded by a single field of view
query. Default: 10000

CM_NODE_PROVIDERS How the back-end node providers should be configured. Default: “[‘postgis2d’]

CM_SUBDIRECTORY The subdirectory relative to the domain root that CATMAID is running in, e.g. “/catmaid”. By
default, no subdirectory is used (“”).

CM_CSRF_TRUSTED_ORIGINS Which servers to trust to bypass CSRF checks. None by default (“”). The format
is expected to be a Python like list, e.g. ‘[“example.com”].

CM_CLIENT_SETTINGS A JSON string representing a set of client settings that are used as default instance level
client settings. Already defined settings take precedence. By default no client settings are provided (“”).

This is an example that will set the neuron name rendering to prefer a name set by an annotation that is meta-
annotated with “Neuron name”:

CLIENT_SETTINGS: '{"neuron-name-service": {"component_list": [{"id": "skeletonid",
→˓ "name": "Skeleton ID"}, {"id": "neuronname", "name": "Neuron name"}, {"id":
→˓"all-meta", "name": "All annotations annotated with \"neuron name\"", "option":
→˓"neuron name"}]}}'

CM_SERVER_SETTINGS A valid Python string that is added to the container’s settings.py file. All specific settings
above override these more general settings. For instance, an alternative way to set the node query limit and
enabling the cropping tool by default would be:

CM_SERVER_SETTINGS=”NODE_LIST_MAXIMUM_COUNT=50000nPROFILE_SHOW_CROPPING_TOOL=True”

CM_FORCE_CLIENT_SETTINGS Normally, the above client settings are only used if there is none already defined
for a user. To enforce the use of the CM_CLIENT_SETTINGS settings, this can be set to true. Default: false

CM_RUN_ASGI Whether or not to run the ASGI server Daphne inside the container. This enables support
for WebSockets, which add some convenience features on the front-end. This is enabled by default, set
CM_RUN_ASGI=false to disable.

CM_RUN_CELERY For asynchronous tasks, CATMAID uses Celery. By default a Celery instance is also run inside
the Docker container. Since Celery isn’t neccessarily required for normal operation (only some operations like
cropping or NBLAST won’t work) and Celery can also be run in a spearate container, running Celery within
the CATMAID container can be disabled by setting this to “false”. By default, Celery is started. If Celery is
enabled, an asynchronous task scheduler will schedule some maintenance tasks every night (e.g. cleaning up
cropped image, updating statistics, etc.).

CM_CELERY_BROKER_URL If Celery is not run within this Container but somewhere else, this variable can be used
to let CATMAID know about where to find Celery.

CM_CELERY_WORKER_CONCURRENCY By defeault Celery runs with one worker in the container. This can be
adjusted here by setting it to a higher number.

CM_CELERY_TIMEZONE There are a handful of maintenance tasks that are executed by CATMAID every night. By
default this happens around midnight in UTC time. The time zone which is used here, can be configured with
this variable. Use e.g. ‘America/New_York’ for US east coast time.

TIMEZONE The timezone this server runs in. By default CATMAID tries to guess. Otherwise see https://en.
wikipedia.org/wiki/List_of_tz_zones_by_name.

1.2. Administrator Documentation 113

https://en.wikipedia.org/wiki/List_of_tz_zones_by_name
https://en.wikipedia.org/wiki/List_of_tz_zones_by_name

CATMAID Documentation, Release 2021.12.21

CORS_OPEN Whether or not the webserver configuration in the container will allow open CORS access, including
optional authentication. Defaults to true.

1.2.16 User accounts

User Profiles

To manage per-user settings, in CATMAID each user has a profile attached. These profiles can be adjusted in the
admin interface by going to a users settings page. Currently, these settings control access to CATMAID’s different
tools.

Those settings also have default values which are user for new users and which can be set for all users at once. To adjust
those defaults to your use case, add and change the following lines to your Django configuration (likely settings.py):

PROFILE_SHOW_TEXT_LABEL_TOOL = False
PROFILE_SHOW_TAGGING_TOOL = False
PROFILE_SHOW_CROPPING_TOOL = False
PROFILE_SHOW_SEGMENTATION_TOOL = False
PROFILE_SHOW_TRACING_TOOL = False
PROFILE_SHOW_TEXT_LABEL_TOOL = False
PROFILE_SHOW_ONTOLOGY_TOOL = False
PROFILE_SHOW_ROI_TOOL = False

As you can see, by default all tools are invisible. Change False to True if you want to make a tool available on
the toolbar for new users. If you want to use these default settings for existing users, please use this management
command:

./manage.py catmaid_set_user_profiles_to_default

If you add the --update-anon-user option, the user profile of the anonymous user will get updated to the current
default settings as well. By default, the anonymous user is not updated.

User registration

If USER_REGISTRATION_ALLOWED = True in settings.py, CATMAID will allow new users to register.
The registration page is reachable through the “Register” link in the upper right corner of the CATMAID website.

Optionally, new users can be required to confirm their email address. This requires a working E-Mail setup
(EMAIL_HOST, EMAIL_PORT, EMAIL_HOST_USER, EMAIL_HOST_PASSWORD, DEFAULT_FROM_EMAIL). If
this is working can be tested from the Python shell:

from django.core.mail import send_mail
send_mail('Test-Mail', 'Test-Message', '<valid-sender>', ['<recipient>'], fail_
→˓silently=False)

If this works, then confirmation emails can be enabled by setting:

USER_REGISTRATION_EMAIL_CONFIRMATION_REQUIRED = True

The text of the welcome message can be adjusted using the USER_REGISTRATION_EMAIL_CONFIRMATION_EMAIL_TEXT
setting. Look at the default in settings_base.py for an example.

This confirmation email also requires admins to defined the correct domain for their CATMAID instance in the admin
interface by changing the default example.com Site entry. Make sure to provide a fully qualified domain like
em.catmaid.org.

114 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

Once users have their email address confirmed, or right after registration, if no confirmation is required, a welcome
email can be sent to users. To enable this email, set USER_REGISTRATION_EMAIL_WELCOME_EMAIL = True.
Its text can be modified as well using the USER_REGISTRATION_EMAIL_WELCOME_EMAIL_TEXT setting. Like
with the confirmation email, have a alook at the default for an example.

Additionally, it is possible to add a Reply-To header in those emails, by setting
USER_REGISTRATION_EMAIL_REPLY_TO to an email address.

1.2.17 Additional back-ends

CATMAID’s front-end can retrieve project and stack information from other services. To do this, the back-end has
to be configured slightly differently to re-route API endpoints related to information retrieval for both projects and
stacks. In this mode, CATMAID is only useful for image viewing at the moment. There are currently two web
services supported, the Janelia Render Service and DVID. Only one of these options can be used at a time.

Janelia Render Service

Add the following to CATMAID’s settings.py file and adjust URL, default resolution as well as tile dimension to your
setup:

Janelia rendering service
MIDDLEWARE += ('catmaid.middleware.JaneliaRenderMiddleware',)
JANELIA_RENDER_SERVICE_URL = 'http://renderer.int.janelia.org:8080/render-ws/v1'
JANELIA_RENDER_DEFAULT_STACK_RESOLUTION = (4,4,35)
JANELIA_RENDER_STACK_TILE_WIDTH = 1024
JANELIA_RENDER_STACK_TILE_HEIGHT = 1024

To also see all projects on the front-end (rather than only in the menus), the simple project list view has to be be used as
a data view. This can be done by either adding it to the list of data views or removing all existing data views, because
it is the default fallback. Both is possible from CATMAID’s admin view. Projects will be organized by owners.

DVID

A setup similar to the Janelia Render Serivce can be used with DVID. To do so add the following to your settings.py
file and adjust to your setup:

MIDDLEWARE += ('catmaid.middleware.DVIDMiddleware',)
DVID_URL = 'http://emdata2.int.janelia.org:7000'
DVID_FORMAT = 'jpg:80'
DVID_SHOW_NONDISPLAYABLE_REPOS = True

1.2.18 R setup for NBLAST and related tools

CATMAID can make use of R to provide support for NBLAST and NRRD export of neurons. To talk to R, CATMAID
uses the rpy2 library, which is an optional dependency. If it isn’t found, CATMAID will print a warning that NBLAST
support is disabled to the log. Before rpy2 can be installed, a recent version of R needs to be installed first. The
instruction below focus on Ubuntu 16.04, but should be similar for other operating systems.

1.2. Administrator Documentation 115

https://github.com/saalfeldlab/render
https://github.com/janelia-flyem/dvid

CATMAID Documentation, Release 2021.12.21

Installing a recent version of R

Add the R 4.0 repository along with its public keys:

sudo gpg --keyserver hkp://keyserver.ubuntu.com:80 --recv-key
→˓E298A3A825C0D65DFD57CBB651716619E084DAB9
sudo gpg -a --export E298A3A825C0D65DFD57CBB651716619E084DAB9 | sudo apt-key add -
sudo add-apt-repository 'deb https://cloud.r-project.org/bin/linux/ubuntu focal-
→˓cran40/'

Install R and its development packages as well as two additional dependencies that are required to install all needed R
packages:

sudo apt-get update
sudo apt-get install r-base r-base-dev mesa-common-dev libglu1-mesa-dev \

libssl-dev libssh2-1-dev libcurl4-openssl-dev cmtk

After a few moments an R version usable by rpy2 should be installed and the next steps focus on the CATMAID
setup.

Installing CATMAID’s R dependencies

With the virtualenv activated, install rpy2:

pip install rpy2

With recent R versions, this should succeed without problems. Next, the R packages providing the NBLAST imple-
mentation need to be installed. It is improtant to to make these installed R packages accessible to both the active
user and the user running the WSGI server or Celery. This can be done by installing the libraries either system wide
(sudo -i R) or, preferred, to create a shared folder that can be used with R both from the command line and from
CATMAID:

mkdir <catmaid-path>/django/projects/r_libs

The actual location doesn’t matter as long as it is accessible by the current user and by the user running CATMAID
and Celery. To make R recognize this library folder from the command line, the environment variable R_LIBS_USER
needs to be set to the new folder:

export R_LIBS_USER=<catmaid-path>/django/projects/r_libs

If R is started now, it will also use this directory in its list of library paths. To make CATMAID aware of this as well,
add the following the settings.py:

R_LIBS_USER = '<catmaid-path>/django/projects/r_libs/'
os.environ['R_LIBS_USER'] = R_LIBS_USER

With this in place, the NBLAST R dependencies can be installed. Since this includes quite a few packages in their
development version, one optional step is recommended before we do this though: setting the GITHUB_PAT envi-
ronment variable to a valid Personal Access Token for your GitHub account (if you have one). Such a token can be
generated in the “Developer settings” section of the User settings view. With a PAT generated, make it available in the
current session:

export GITHUB_PAT='<a-random-string-of-letters-and-digits'

Like said above, this is optional, but might speed up the installation a bit. With this done, it should be enough to call
the following management command to install all needed R dependencies into the new R library folder:

116 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

manage.py catmaid_setup_nblast_environment

If this was successful, CATMAID should now able to talk to R.

Note: If a system-wide installation is used, the installation has to be done manually:

$ sudo -i R # Or just R if R_LIBS_USER is used
> install.packages(c("doMC", "R6", "rgl", "plyr"))
> devtools::install_github(c("natverse/nat", "natverse/nat.nblast",
> "natverse/rcatmaid", "natverse/fafbseg", "natverse/elmr",
> "natverse/nat.templatebrains", "natverse/nat.flybrains",
> "natverse/nat.jrcbrains"))
>
> nat.jrcbrains::download_saalfeldlab_registrations()
> nat.flybrains::download_jefferislab_registrations()

If each command was successful, every user on the system should now be able to run CATMAID related R code.

Using NBLAST and other R based tools

The front-end will provide support for NBLAST mainly through the “Neuron Similarity” widget. Everything should
work with the default configuration.

R can execute some functionality in parallel (e.g. computing NBLAST scores). The number of parallel processes is
set to one by default, but can optionally be configured using the MAX_PARALLEL_ASYNC_WORKERS setting, e.g.:

MAX_PARALLEL_ASYNC_WORKERS = 4

The NRRD access functions need slightly more setup at the moment. In order to use them, a small set of additional
variables need to be set in the settings.py configuration file. The complete URL of the CATMAID instance is
needed:

CATMAID_FULL_URL = "https://example.com/catmaid/"

And if basic HTTP authentication is in use, the following needs to be set as well:

CATMAID_HTTP_AUTH_USER = "<http-auth-user>"
CATMAID_HTTP_AUTH_PASS = "<http-auth-password>"

This is not ideal and likely to change in the future, but for now this is needed. For some operations CATMAID has R
connect to itself through HTTP.

1.2.19 Configuring NBLAST

After setting up the R environment for NBLAST the front-end tools like the Similarity Widget should work. By
default these tools will read the most recent skeleton data from the database. For bigger datasets this can introduce
some performance problems. Typically, in bigger datasets, only a small portion of skeleton does actually change and
a cache can be used for some data.

1.2. Administrator Documentation 117

CATMAID Documentation, Release 2021.12.21

Creating skeleton caches

Caches are stored in R’s binary RDS files in the cache directory in the MEDIA_ROOT path. At the moment, caches
are created either manually, e.g. through the management shell or through a cron job:

from catmaid.control.nat.r import create_dps_data_cache
project_id = 1
create_dps_data_cache(project_id, 'skeleton', tangent_neighbors=5, detail=10, min_
→˓nodes=100, progress=True)

This would create the cache file r-dps-cache-project-1-skeleton-10.rda`, following the pattern
r-dps-cache-project-<project-id>-<type>-<detail>.rda.

Caches can be created for the types skeleton and pointcloud. The tangend_neighbords settings defines
how many neighbor points should be used to compute a tangent vector, the default is 20, but 5 often yields good results
as well and is faster. The detail setting defins the branching level below which skeletons will be pruned. Using
the min_nodes setting, only skeletons with the respective minimum number of nodes are included. By default, no
progress is shown, which can be changed using the progress setting.

1.2.20 Setting up OAuth2 providers for login

CATMAID can use other OAuth2 services like GitHub or Orcid.org to sign users in. Internally a reg-
ular Django account is created that is linked to the selected remote service. These accounts respect the
NEW_USER_DEFAULT_GROUPS setting and default tool configuration.

Below there are instructions to set this up with GitHub and Orcid.org. A lot more services are supported, more details
can be found on the django-allauth documentation.

All OAuth2 providers have a parameter called “redirect URLs”. When a user tries to login to such a service through
CATMAID, a URL to a login API on this CATMAID server is sent along the login service. The login service has a
white list of URLs that are passed in (the redirection URLs) and allows only a successful login if the passed in URL is
on this white list.

GitHub

1. Add GitHub support to installed applications in settings.py:

INSTALLED_APPS += ('allauth.socialaccount.providers.github',)

2. Create GitHub OAuth application:

https://github.com/settings/applications/new

Make sure that the “Authorization callback URL” machtes your setup. Generally, the form is:

https://<catmaid-path>/accounts/github/login/callback/

For a local development setup, use this URL:

http://localhost:8000/accounts/github/login/callback/

This creates a Client ID and a Client Secret, which are needed in a later step.

3. Create a Site object in the CATMAID admin view with ID = 1, or if you have configured your own SIDE_ID
in settings.py use this one.

118 Chapter 1. Documentation

https://django-allauth.readthedocs.io/en/latest/installation.html
https://github.com/settings/applications/new

CATMAID Documentation, Release 2021.12.21

4. Create Social application using the GitHub provider in CATMAID’s admin view. Use Client ID and Client
Secret created in step 2.

5. The front-end should now display a menu for when hovering the mouse over the Login button, showing the new
entry “Login with GitHub”. Clicking it should ask your GitHub user account if CATMAID has permission to
use it.

Orcid.org

To use Orcid.org as login service, their Public API is sufficient, which is available to everyone to everyone with an
Orcid.org account. The details on how to create a new application and obtain the Client ID and Client Secret can
be found on orcid.org. Everyone with an Orcid ID can create new applications from the developer tools (available
in the user account drop down menu). Remember to define the redirect URLs or domains properly. With this done,
CATMAID can be configured like this:

1. Add ORCID support to installed applications in settings.py:

INSTALLED_APPS += ('allauth.socialaccount.providers.orcid',)

2. Create a Site object in the CATMAID admin view with ID = 1, or if you have configured your own SIDE_ID
in settings.py use this one. Multiple login services can use the same site.

4. Create Social application using the Orcid.org provider in CATMAID’s admin view. Use Client ID and Client
Secret assigned in the Orcid.org sign-up process.

5. The front-end should now display a menu for when hovering the mouse over the Login button, showing the new
entry “Login with Orcid.org”. Clicking it should ask your Orcid user account if CATMAID has permission to
use it.

Orcid.org sandbox

Obtaining an Orcid.org sandbox account is easier and a prerequisite of a production account. More details on the
process can be found on orcid.org. This process will also result in a Client ID and a Client Secret.

The rest of the Orcid-Sandbox configuration is just like the production Orcid.org setup, but needs additionally the
following entry in settings.py:

SOCIALACCOUNT_PROVIDERS = {
'orcid': {

Base domain of the API. Default value: 'orcid.org', for the production API
'BASE_DOMAIN':'sandbox.orcid.org', # for the sandbox API
Member API or Public API? Default: False (for the public API)
'MEMBER_API': True, # for the member API

},
}

1.2. Administrator Documentation 119

https://support.orcid.org/hc/en-us/articles/360006897174
https://orcid.org/content/register-client-application-sandbox

CATMAID Documentation, Release 2021.12.21

1.2.21 Frequently Asked Questions

My CATMAID instance is working in debug mode, but can’t be reached in production. What is the
problem?

If you see return code 400 (Bad Request), check the ALLOWED_HOSTS setting in your Django configuration file:

django/projects/mysite/settings.py

Since Django 1.5 this setting is present and should contain a list of all host/domain names that your CATMAID
instance is reachable under. Access will be blocked if target host isn’t found in this list. For more detail have a look at
the Django documentation.

Be aware that if you use Nginx and make a WSGI server available through an upstream definition, the host that
Django sees is the upstream’s name. So this is what you want to add to ALLOWED_HOSTS. Alternatively, you can add
a X-Forwarded-Host header when calling the upstream in a Nginx location block to forward the original host to
Django:

proxy_set_header X-Forwarded-Host $host;

If you then instruct Django to use this header by setting USE_X_FORWARDED_HOST = True in settings.py
(see doc), you can add the original host name to ALLOWED_HOSTS.

I have more than one CATMAID instance running on the same (sub-)domain, but in different folders.
When I open different instances in the same browser at the same time, one session is always logged
out. Why?

Django uses the cookie name ‘sessionid’ for its session information in a cookie called ‘csrftoken’ for CSRF informa-
tion. This is fine if only one instance is running on a certain domain. If, however, multiple instances run on the same
domain, this naming scheme fails. The same cookie name is then used for both instances, which leads to the logout in
all but one instances if the multiple instances are opened in the same browser.

To fix this, either regenerate your settings.py file with a recent CATMAID version or manually set different names
for the relevant cookies in all your settings.py files by overriding the variables SESSION_COOKIE_NAME and
CSRF_COOKIE_NAME. Recent CATMAID versions do this automatically, based on the specified sub-folder.

I get an error 500 response and in debug mode I see the error “libhdf5.so.8: cannot open shared
object file: No such file or directory”. This might have started after the system update.

Apparently, your system’s HDF5 library was changed. Therefore, the Python bindings that are used by CATMAID
have to be updated. Given you are within the virtualenv and in CATMAID’s django directory, the following
should fix it:

grep h5py requirements.txt | xargs pip install -I

This will reinstall (and recompile) the HDF5 python bindings with the version specified in our dependency file
(requirements.txt).

120 Chapter 1. Documentation

https://docs.djangoproject.com/en/1.6/ref/settings/#allowed-hosts
https://docs.djangoproject.com/en/1.8/ref/settings/#use-x-forwarded-host

CATMAID Documentation, Release 2021.12.21

CATMAID stopped working after PostGIS update

Updating PostGIS on your host system could cause CATMAID to stop working. You might see errors like:

django.core.exceptions.ImproperlyConfigured: Cannot determine PostGIS
version for database "catmaid". GeoDjango requires at least PostGIS
version 1.3. Was the database created from a spatial database template?

This can happen when old PostGIS library files are removed and PostGIS can’t find what it expects. To fix this, log
into the CATMAID Postgres database and update the PostGIS extension:

sudo -u postgres psql -d <CATMAID-DB-NAME>
ALTER EXTENSION postgis UPDATE;

No image data due to lack of Cross-Origin Resource Sharing (CORS) headers

You might get an error like this if you don’t serve images with CORS header fields:

Image from origin 'http://images.catmaid-host.org' has been blocked from
loading by Cross-Origin Resource Sharing policy: No
'Access-Control-Allow-Origin' header is present on the requested resource.
Origin 'http://other.catmaid-host.org' is therefore not allowed access.
"""

This can be fixed by sending an access policy header along with the images, coming in the form of this header field:

Access-Control-Allow-Origin *

An example setup for Nginx can be found here.

Nginx won’t serve static files

Besides checking the Nginx configuration itself, make sure the files are readable by the user running Nginx (e.g.
www-data). Also, to serve static files, Nginx needs execute permission on every directory in the path to those files.
To check this, the namei command can be very helpful, because it can list permissions for each path component when
called like this: namei -l /path/to/static/files.

1.2.22 Installing Catmaid with an RDS database backend

Catmaid can be installed (usually in AWS) using Amazon RDS as its backend, with a few small changes to the
install/upgrade procedure.

Things to note

• On RDS you don’t get full admin over your database. The admin account for your database has sufficient
privileges for most things you will need to do

• You can use AWS security groups to restrict access to your database to the EC2 instance your Catmaid is in (if
you are in EC2) or to the IP your Catmaid has (if you are not)

1.2. Administrator Documentation 121

CATMAID Documentation, Release 2021.12.21

The process

1. On a Catmaid host that’s not running a local PostgresSQL server, you only need to install the Postgresql client
libraries and commandline tools. The PostgreSQL server components should not be installed.

2. When making the RDS instance, a m4.large (or equivalent) should be sufficient for most use. If you ever need
more performance you can easily up the stats on the host with a modify operation. Unless your Catmaid is
outside of EC2, you should allocate the host without a public IP.

3. If your Catmaid host is in EC2, put it in a security group called “catmaid” (do not attach a policy directly to this
SG - it is just for grouping), and allocate your RDS host in a security group called “catmaid-db”. In the security
group settings for catmaid-db, write an inbound policy allowing inbound 5432/TCP from the catmaid security
group.

4. If your Catmaid host is not in EC2, you only need a catmaid-db security group, with an inbound policy allowing
inbound 5432/TCP from the IP of your Catmaid server.

5. The choice between production and testing setup for the Catmaid RDS is up to you; the multi-zone settings in
AWS’s production setup get you higher uptime, but the difference is small and having your RDS more reliable
than your (single-homed) Catmaid serves no actual purpose.

6. The admin user might be named catmaid; the database made in the instance should be named catmaid (it is fine
to let the AWS console make this)

After you have the RDS instance up, connect to the catmaid database using the postgres command from your catmaid
server, verify connectivity, and then setup GIS as follows:

CREATE EXTENSION postgis;
CREATE EXTENSION fuzzystrmatch;
CREATE EXTENSION postgis_tiger_geocoder;
CREATE EXTENSION postgis_topology;

ALTER SCHEMA tiger OWNER TO catmaid;
ALTER SCHEMA tiger_data OWNER TO catmaid;
ALTER SCHEMA topology OWNER TO catmaid;

CREATE FUNCTION exec(text) returns text language plpgsql volatile AS f BEGIN
→˓EXECUTE $1; RETURN $1; END; f;
SELECT exec('ALTER TABLE ' || quote_ident(s.nspname) || '.' || quote_ident(s.relname)
→˓|| ' OWNER TO rds_superuser;')
FROM (
SELECT nspname, relname
FROM pg_class c JOIN pg_namespace n ON (c.relnamespace = n.oid)
WHERE nspname in ('tiger','topology') AND
relkind IN ('r','S','v') ORDER BY relkind = 'S')

s;

This is necessary to make the permissions appropriate for GIS support.

Next, to migrate to RDS (or between RDS instances during an upgrade), one must use pg_dump (in text format, not
custom format) during an upgrade, and use the psql command to load the data into the new (RDS) instance.

To tell Catmaid how to connect to the database, set the following two fields in configuration.py:

catmaid_database_host = 'my-catmaid-rds.c99999hh4gfj.us-east-2.rds.amazonaws.com'
catmaid_database_port = '5432'

(adjusting the former for the RDS endpoint your instance has). Do NOT replace the RDS endpoint hostname with its
IP (in the long term the IP is not guaranteed to be stable).

122 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

1.3 Developer Documentation

1.3.1 Developer setup with Vagrant

CATMAID has a lot of dependencies and is only supported on Ubuntu. To ease the setup for developers, CATMAID
has a Vagrant configuration, which allows you to develop inside a virtual (“guest”) machine.

Unlike docker, data will be persisted between restarts, and you can interact with the container over SSH.

The repository directory is mounted into the container so all changes are reflected on both the host and the guest
machine.

Quickstart (linux)

• Install VirtualBox and vagrant

• Make a fresh clone of the CATMAID repository and cd into it

• vagrant up

• vagrant ssh, then once inside

– Go to code directory: cd /CATMAID

– Finish setup: scripts/vagrant/optional.sh

– Start the dev server: django/projects/manage.py runserver [::]:8888

• Develop, inside or outside the container!

Vagrant

Vagrant is an easy-to-configure abstraction layer over a number of virtual machine providers (e.g. VirtualBox,
VMWare, Hyper-V) implemented in ruby 2.6. Once installed, you need only vagrant up inside the repository
to create a fully-fledged Ubuntu VM with PostgreSQL running, fully populated Python and Node environments, and
a base R environment.

Install vagrant and the VirtualBox VM provider. You may need to enable virtualization in the BIOS. Additionally,
install the vagrant-disksize plugin, with vagrant plugin install vagrant-disksize. Note also
that VirtualBox may not be compatible with Docker under windows.

vagrant up Start up the container. If the image (box) doesn’t exist, it will be downloaded. If the container doesn’t
exist, it will be provisioned (i.e. dependencies will be installed).

vagrant ssh SSH into a running container.

vagrant ssh-config Print out configuration for SSHing into the container with the regular ssh command (see
below).

vagrant suspend Hibernate the container, saving its current state.

vagrant resume Resume a ``suspend``ed container.

vagrant destroy Delete the container.

See the vagrant documentation for more details.

Tools like VScode need to be able to SSH into the container themselves. They get their configuration from your user’s
SSH configuration (~/.ssh/config on Linux). Copy and paste (or echo) the output of vagrant ssh-config
(ignoring any warnings from ruby gems) into this file. The hostname of the container will be catmaid-vm.

1.3. Developer Documentation 123

https://www.vagrantup.com/intro/index.html
https://www.vagrantup.com/docs/installation/
https://www.virtualbox.org/manual/UserManual.html#installation
https://docs.docker.com/docker-for-windows/install/#system-requirements
https://www.vagrantup.com/docs/cli/

CATMAID Documentation, Release 2021.12.21

Warning: suspend the container before shutting down the host!

Snapshots

You can save the state of a running VM and restore it later. This is helpful if you install additional tools or data into
your VM, and is quicker to load than a full re-provision.

vagrant snapshot save <name> Save the VM’s current state with the given name.

vagrant snapshot list Show the available snapshots.

vagrant snapshot restore <name> Restore the named snapshot.

Note that destroying a VM also destroys all snapshots of it.

More information is available in the vagrant documentation.

Setup

Guest machine configuration

By default, the guest machine is quite small: it may not be able to hold much data and have poor performance. You
can customise the machine’s “hardware” by setting environment variables on the host machine when the guest is first
set up.

The guest’s disk size is 60GB by default (but does not take up that much space until it’s full). To increase this, set
the CATMAID_VM_DISK environment variable to something like "100GB". The guest’s RAM size, in MB, will be
2048: change it by setting CATMAID_VM_RAM_MB. It will use 2 CPUs, which can be set with CATMAID_VM_CPUS.

Consider using direnv or dotenv, or adding these variables to your shell rc or profile script, to ensure you always have
them set when interacting with Vagrant.

Provisioning

The first time the VM is started, it is “provisioned” - i.e. CATMAID’s dependencies are installed. Subsequent startups
will be much faster.

Some red messages during provisioning are expected: every line prepended with a + is just showing what command
is being run.

This provisioning gets you up to step 3 in the basic installation instructions (setting up the OS-level dependencies and
python environment). The database and CATMAID configuration are done separately, in case you prefer your own
configuration to the recommendations in the installation instructions.

To finish off the installation according to the instructions, SSH into the VM (vagrant ssh) and bash /
CATMAID/scripts/vagrant/optional.sh. If the DB_NAME, DB_USER, DB_PASSWORD, or TIMEZONE
environment variables are set (on the guest), they will override the defaults (when the machine is provisioned, the
host’s timezone will be added to ~/timezone, which is used as the default timezone here). This creates your local
settings, applies database migrations, collects static files as symlinks, creates a CATMAID superuser (you will need to
input your the username, email, and password), inserts example projects (N.B. the data for these projects is probably
not accessible), and sets CATMAID’s writable directory to /CATMAID/data.

124 Chapter 1. Documentation

https://www.vagrantup.com/docs/cli/snapshot.html
https://direnv.net/
https://pypi.org/project/python-dotenv/

CATMAID Documentation, Release 2021.12.21

Virtual machine layout

The container runs Ubuntu Linux 18.04. In Linux, / is the root directory, and ~ is the home directory of the user
(called vagrant in the container: so ~ is /home/vagrant).

• The CATMAID repository is in /CATMAID. This is the exact same directory as lives on the host.

• The Node environment is stored in ~/catmaid-npm-overlay/node_modules, and overlaid onto /
CATMAID/node_modules. This prevents it interfering with the host’s node environment and vice versa.

• The Python environment is stored in ~/catmaid-env, and is automatically activated when you SSH in.

• R packages are in ~/R.

Some guest ports are forwarded to the host machine so that you can access the database, test with the dev server, and
look at the generated sphinx docs.

Service Guest
port

Host
port

Notes

PostgreSQL 5555 5555 Not the default port 5432
Django dev
server

8888 8888 django/projects/manage.py runserver
[::]:8888

Docs server 8889 8889 cd sphinx-doc && make serve

If optional.sh was used to configure the VM, and no parameters were given using environment variables:

• The CATMAID database is called “catmaid”.

• The database user is called “catmaid_user”.

• The database user passwrod is “p4ssw0rd”.

• The CATMAID time zone is the same as the host machine, if the host machine has a POSIX terminal, or defaults
to America/New_York (but the guest machine is UTC).

Development

Because the development server will technically be accessed from outside of the machine it’s running on, you will
need to start it with django/projects/manage.py [::]:8888

From inside the container, connect to the database with psql -U catmaid_user catmaid. From the host, add
the options -h localhost -p 5555.

VSCode’s Remote - SSH extension allows you to develop in the container directly. The connection details are picked
up from your ~/.ssh/config file.

PyCharm Professional has support for remote interpreters built in.

You can also install your own development toolchain inside the container - it’s just ubuntu! Alternatively, you can
make your edits using the host machine, and just use the VM to test, lint, run the database, etc.

1.3. Developer Documentation 125

https://code.visualstudio.com/docs/remote/ssh
https://www.jetbrains.com/help/pycharm/configuring-remote-interpreters-via-ssh.html

CATMAID Documentation, Release 2021.12.21

Making commits

By default, the git user is not globally configured inside the VM, and cannot make commits. You have a few options:

• Interact with git only from the host machine

• Configure git globally inside the VM

• Configure your user locally in the repository (allowing its use from either the host or the guest)

1.3.2 Contributing to CATMAID

CATMAID is open source software and welcomes contributions. This document provides a brief overview of the
structure of CATMAID and guidelines contributing developers follow to help keep the codebase easy to understand
and easy to extend.

If you are considering contributing a feature to CATMAID, you can get guidance from other active developers through
the CATMAID mailing list and GitHub repository. Always check the list of open issues as there may be valuable
discussion relevant to your plans.

Before developing any features you should follow the basic installation instructions to set up your development envi-
ronment.

Architecture Overview

CATMAID is a distributed client-server application. The backend HTTP API, hosted by the server, retrieves and stores
information about projects, image stacks, and annotations. The client frontend, which runs in the browser, provides an
interface and suite of analysis tools which interact with the backend’s HTTP API. The frontend also has its own APIs
which allow new tools to be quickly constructed or expert users to perform novel analysis using the browser console.

The backend is written primarily in Python 3.8 using the Django web framework. Annotations and metadata about
stacks are stored in a PostgreSQL database. Most endpoints in the backend API expect and return JSON.

The frontend is written primarily in Javascript and makes use of a several external libraries. Most interfaces are built
dynamically through Javascript; few HTML templates are used.

A core philosophy of this architecture is to keep the backend API fast and minimal. The primary purpose of the
backend is to mediate the database. Complex analysis and data processing is performed on the client whenever
possible. This allows large scale collaboration with constrained server resources. Distributing computation this way
also exploits CATMAID’s implementation choices, as modern Javascript VMs are typically much faster than Python.

CATMAID is not an image host. Rather, the CATMAID backend provides resource, spatial, and semantic metadata
about image stacks hosted elsewhere, while the CATMAID frontend is capable of rendering and navigating these
image stacks. More information about the types of image hosts CATMAID supports is available in the tile source
conventions documentation.

126 Chapter 1. Documentation

https://groups.google.com/forum/#!forum/catmaid
https://github.com/catmaid/CATMAID
https://github.com/catmaid/CATMAID/issues

CATMAID Documentation, Release 2021.12.21

Project Organization

Code you are likely to be interested in is under the django folder in the repository root. The sections below outline
basic folder, file, and module structure for the backend and frontend, as well as primers on a few common data
structures.

Backend

All of the relevant backend code is in the django/applications/catmaid folder. Within this folder, models.
py defines the database schema and logical objects on which the back API operates, while urls.py maps URI
endpoints in the API to Python methods. Both are useful starting points when locating particular functionality or
determining where to add new functionality. In case an endpoint changes data, a transaction log entry is added. This
way semantic information can be linked to individual database changes.

Most of the API routes to the catmaid.control module and folder. Within this module API functions are orga-
nized into logical units like skeleton or connector, which are grouped into corresponding Python modules. These often
contain utility functions not exposed by the API that may be useful, so when developing a new API endpoint be sure
to check related modules for reusable utilities.

Back-end errors should always be signaled to the front-end with the help of Exceptions. Regardless whether an
argument is missing, permissions are lacking or something went wrong otherwise. A dedicated middleware will catch
them and return them in an expected format to the front-end.

Frontend

If developing frontend functionality, a good strategy is to start by running scripts in the browser console to quickly
prototype and become familiar with client APIs. The scripting wiki provides an introduction to these APIs and snippets
for common scripting tasks.

Javascript source files should be placed in the django/applications/catmaid/static/js folder. External
libraries are located in the django/applications/catmaid/static/libs folder, although there is also a
special CATMAID library for shared, stable components. Javascript and CSS assets from these locations are managed
by django-pipeline. When you add a Javascript file to the static/js folder and then run:

./manage.py collectstatic -l

from the project folder, pipeline detects these assets, compiles and compresses them (if configured to do so), then
passes them to Django to be linked from the configured static server directory. Assets for this pipeline are configured
in django/projects/mysite/pipelinefiles.py. Source files placed in static/jswill be detected au-
tomatically, but any external libraries added to the static/libs folder must also be added to pipelinefiles.
py.

Within the static/js folder and within the CATMAID frontend there is a distinction between tools and widgets. A
tool contains a suite of annotations, interfaces and analyses. A widget, meanwhile, provides a single specific interface.
Most likely you are familiar with a single tool in CATMAID, the tracing tool, but many widgets within the tracing
tool, such as the 3D viewer, connectivity widget, and selection table.

Widgets are generally prototyped objects that extend InstanceRegistry, which provides an easy means to track
open instances of a particular widget. Rather than construct their own DOM, most widgets’ DOM is built by a
corresponding method in WindowMaker. WindowMaker binds events from the DOM it constructs to relevant
handlers in the widget object.

1.3. Developer Documentation 127

https://github.com/catmaid/CATMAID/wiki/Scripting

CATMAID Documentation, Release 2021.12.21

Code Style and Conventions

Over the history of its development, CATMAID has accumulated a mixture of many coding styles. To improve
the consistency and clarity of code going forward, as well as to prevent some common technical pitfalls, the core
developers now follow some simple guidelines for new code. These guidelines are relaxed and permissive.

If modifying existing code, feel free to imitate the style of the surrounding code if it conflicts with these guidelines.

Python

CATMAID does not currently adhere to a specific Python style convention like PEP8. However, code should still
follow common Python conventions and idioms including:

• 4 spaces (not tabs) for indentation

• Maximum line length of 79 characters for comments

• Maximum line length of 120 characters for code

• PEP8 naming conventions

All new code should include docstrings that follow PEP257 and use Google’s argument formatting.

For consistency, python code will be linted using flake8: the configuration can be found in the repository. Contri-
butions which do not conform with those rules will fail CI checks. Several rules are ignored due to a large volume of
non-compliant legacy code. New code should try to conform even to these rules where appropriate, unless doing so
would reduce the consistency of the codebase.

Type annotations should be used where possible. Currently, these are checked on CI using mypy for informational
purposes only.

HTTP API

Documentation for endpoints exposed by the HTTP API is available from the CATMAID server itself via the /apis/
page:

http://localhost:8000/apis/

. . . or, for custom configurations:

http://<catmaid_servername>/<catmaid_subdirectory>/apis/

Functions that are exposed as HTTP API endpoints should declare what HTTP methods they accept using the
@api_view decorator. Endpoints’ docstrings should define what parameters they accept and the strucuture of their
response in Swagger spec using django-rest-swagger’s YAML hooks:

@api_view(['GET', 'POST'])
def api_endpoint(request):

"""Short endpoint description.

Longer description of the endpoint's purpose, expectations and behavior.

This endpoint returns an array of objects, so the model of the objects
in the array must be specified in a separate ``model`` stanza.

parameters:

- name: resource_id

(continues on next page)

128 Chapter 1. Documentation

https://www.python.org/dev/peps/pep-0008/#naming-conventions
https://www.python.org/dev/peps/pep-0257/
http://sphinxcontrib-napoleon.readthedocs.org/en/latest/example_google.html
https://github.com/clbarnes/CATMAID/blob/flake8-fixes/setup.cfg#L6
https://github.com/swagger-api/swagger-spec/blob/master/versions/1.2.md
http://django-rest-swagger.readthedocs.org/en/latest/yaml.html

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

description: ID of a resource.
required: true
type: integer
paramType: form

models:
api_endpoint_inner_type:

id: api_endpoint_inner_type
properties:
name:
description: Name of some example type that this endpoint
type: string
required: true

type:
- type: array

items:
$ref: api_endpoint_inner_type

required: true
"""
#...

API URLs should prefer plural resource names and use hyphens rather than underscores. Non-terminal endpoint
paths that represent resources should have a trailing slash, e.g., GET http://localhost/{project_id}/
skeletons/, but not terminal operations on that resource collection like GET http://localhost/
{project_id}/skeletons/review-status.

Parameters that are not resource identifiers should be passed as query or form parameters, not in the URL path. If an
endpoint accepts an array of parameters, it should support receiving the array encoded as JSON; form array parameters
may be accepted, but a JSON array in a single form parameter must be accepted for ease of use.

Prefer descriptive, consistent names for parameters. For example, an endpoint receiving a list of skeleton identifiers
should prefer a parameter named skeleton_ids over skids or ids; a few bytes in the header are not going to
have a performance impact relative to the packaging of HTTP and transport, much less when HTTP/2 and modern
compression-aware browsers are involved. However, abbreviated property names or array-packed values are accept-
able for the responses of performance-critical endpoints.

Date and time response values should be in UTC and formatted as ISO 8601.

Endpoints containing write operations should be decorated with a record_view decorator in urls.py, which
expects a label as argument. This label should follow the pattern resource.action and just like URI itself, the
resource is expected to be in its plural form. Make sure to follow this convention for new endpoints.

Javascript

New code in CATMAID is styled similar to the Google Javascript style guide, with notable exceptions that:

• CATMAID does not use any Google libraries

• CATMAID does not use any requirements/dependency libraries

• CATMAID uses CamelCase namespace naming

New javascript files should place all code inside an IIFE to namespace it inside the CATMAID object and use ES5 strict
mode:

(function (CATMAID) {

"use strict";

(continues on next page)

1.3. Developer Documentation 129

https://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml
http://en.wikipedia.org/wiki/Immediately-invoked_function_expression
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

var variableNotExposedOutsideFile;

var ClassExposedOutsideFile = function () {
//...

};

CATMAID.ClassExposedOutsideFile = ClassExposedOutsideFile;

})(CATMAID);

This prevents unintentional leaking of variables into the global scope and possible naming conflicts with other libraries.

CATMAID makes full use of ES5 language features and allows the following ES6 features:

• Promises

• Maps and Sets (IE11-supported get, has, set, delete and forEach only)

• const and let declarations (in strict mode contexts only)

All features must work correctly in recent versions of Chrome and Firefox, while core browsing features must work
in IE11. Requiring polyfills for IE is acceptable.

Git

Try to follow the seven rules of great git commit messages:

1. Separate subject from body with a blank line

2. Limit the subject line to 50 characters

3. Capitalize the subject line

4. Do not end the subject line with a period

5. Use the imperative mood in the subject line

6. Wrap the body at 72 characters

7. Use the body to explain what and why vs. how

That said, always prefer clarity over dogma. The core CATMAID contributors break #2 frequently to keep messages
descriptive (apologies to our VAX users). If a commit focuses on a particular component or widget, prefix the commit
message with its name, such as “Selection table:” or “SVG overlay:”.

Granular commits are preferred. Squashes and rollups are avoided, and rebasing branches then fast-forwarding is
preferred over merge commits when merging, except for large feature branches.

Development occurs on the dev branch, which is merged to master when a release is made. It is usually best to
develop new features by branching from dev, although critical fixes or extensions to particular releases can be based
on master or the appropriate release tag.

Never rewrite history of master, dev, or any other branch used by others.

130 Chapter 1. Documentation

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
http://chris.beams.io/posts/git-commit/#seven-rules

CATMAID Documentation, Release 2021.12.21

Linting and Testing

As part of the continuous integration build, several automated processes are performed to help verify the correctness
and quality of CATMAID:

• Unit and integration tests for Django backend

• Linting (static analysis) of the python code with flake8

• Type checking of the python code with mypy

• Linting (static analysis) of the javascript code with JSHint

• Linting of CSS with csslint

• Unit tests of javascript code with QUnit

If you enable Travis-CI for your fork of CATMAID on GitHub, Travis will run all of these checks automatically.
However, Travis builds take a long time, and you may want feedback before committing and pushing changes. Luckily
all of these checks are easy to run locally.

Django tests are run through Django’s admin commands:

cd /<path_to_catmaid_install>/django/projects
./manage.py test catmaid.tests

flake8 and mypy are installed along with other python development dependencies. Run them with:

flake8 django
mypy django

JSHint can be installed from NPM or your platform’s package manager and should use CATMAID’s config settings:

cd /<path_to_catmaid_install>
jshint --config=.travis.jshintrc --exclude-path=.travis.jshintignore django/
→˓applications

If you do not want to configure your own JSHint settings, you can set these as defaults:

ln -s .travis.jshintrc .jshintrc
ln -s .travis.jshintignore .jshintignore
jshint django/applications

CSS linting is performed by running csslint from the static CSS directory:

cd django/applications/catmaid/static/css
csslint .

QUnit tests can be run from the browser while your Django server is running. For example, with the default configu-
ration this would be:

http://localhost:8000/tests

. . . or, for custom configurations:

http://<catmaid_servername>/<catmaid_subdirectory>/tests

Alternatively, the front-end tests can be run in a terminal (as it is done in our CI setup). To do so, first a few dependen-
cies have to be installed and then karma is used to execute the tests from the CATMAID root directory:

1.3. Developer Documentation 131

https://travis-ci.org/catmaid/CATMAID/branches
http://docs.travis-ci.com/user/getting-started/#Step-two%3A-Activate-GitHub-Webhook
http://jshint.com/install/

CATMAID Documentation, Release 2021.12.21

cd /<path_to_catmaid_install>
npm install --only=dev
karma start karma.conf.js

Documentation

In addition to the backend, HTTP API, and frontend documentation mentioned above, CATMAID provides a general
documentation manual for users, administrators, and developers (including this page) and in-client documentation for
keyboard shortcuts and widget help.

General Documentation

General documentation is part of the CATMAID repository under the sphinx-doc folder. This documentation is
written in Sphinx ReStructured Text. Documentation from commits pushed to the official CATMAID repository are
built by Read the Docs and hosted at catmaid.org.

CATMAID’s documentation can be built in various formats by navigating to the sphinx-doc directory and us-
ing make. The default (i.e. make with no arguments) is HTML, which builds the documentation at sphinx-
doc/build/html/index.html.

Every build target can automatically be built when the source files change, by using make watch-<target>.
Build the HTML docs, watch for changes, and serve the documentation at http://localhost:8889 using make
serve.

In-Client Documentation

Documentation is provided from within the web client through tool-scoped mouse and keyboard shortcut documenta-
tion (accessed by pressing F1) and per-widget help accessible through the question mark icon in the title bar of some
widgets.

If you find that widget help documentation is missing, incomplete, confusing, or incorrect, you can contribute better
documentation by creating an issue on GitHub or editing the helpText property of the widget and creating a pull
request.

Other Policies

Security

The disclosure policy of the CATMAID developers for vulnerabilities is that arbitrary SQL execution by anonymous
users or users with “browse” permissions must be notified to the mailing list simultaneous with patch publication.
Vulnerabilities only exploitable by users with “annotate” permissions will be noted in the release changelog but will
not be sent to the mailing list.

132 Chapter 1. Documentation

http://www.sphinx-doc.org/
https://readthedocs.org/
http://catmaid.org
https://www.gnu.org/software/make/
https://github.com/catmaid/CATMAID/issues/new

CATMAID Documentation, Release 2021.12.21

1.3.3 Tile Source Conventions

CATMAID does not serve image data itself. Instead, it stores a few critical pieces of information about the image
volume and specifies a set of conventions for retrieving image data from a separate image volume host. These conven-
tions are tile source types, which define parameters and URL formats both the CATMAID backend and frontend can
use to access image data for rendering and analysis.

This document provides information on the type source types specified by CATMAID, the parameters which they use
to retrieve image data, how this is stored in the CATMAID backend, and how to create a new tile source type in the
CATMAID backend and frontend.

Also note that CATMAID will clamp the display of tiled data by default to zero (i.e. no request is made for tiles
at coordinate [-1, 0] in the plane). This behavior can be changed by adding the boolean field clamp to the stack’s
metadata field with a value of false. The metadata field expects a JSON format, so the content would look
like {"clamp": false}.

Tile Source Parameters

Each tile source type uses a subset of the following parameters to determine its source regardless of the specific tiles
being retrieved. Though specific APIs may use different names for these parameters, the names provided here are used
for consistency in defining tile source types below:

sourceBaseURL (string) This defines a base URL for the source server and volume, including trailing slash.

dimension (integer array [x, y, z]) Dimension of the image volume in pixels at its original scale level.

resolution (double array [x, y, z]) Resolution of the image volume in nanometers at its original scale level.

numZoomLevels (integer) The number of zoom levels (downsampling octaves) which the source supports.

fileExtension (string) Filename extension for image tiles served by the source.

tileWidth (integer)

tileHeight (integer) Dimensions of image tiles in pixels. For pre-tiled sources, this should be the dimensions of
the source tiles, while for dynamic sources this should be the preferred dimension for retrieval and rendering.

orientation (integer|string) Orientation of the stack relation to project space. Semantically this value is either
“XY”, “XZ”, “ZY”, but is usually passed as an integer in {0, 1, 2} enumerating these, respectively.

Currently only DVID tile source types (6, 8) must know orientation directly. Other tile source types encode
orientation in the sourceBaseURL.

tileSourceType (integer) A integer enumerating the types of tile sources listed below.

Tile Parameters

Tile sources may additionally make use of a subset of the following parameters when determining how to retrieve
specific tile requests:

row (integer) The row of the tile in the image grid for this z-slice, e.g., the floor of the tile y origin divided by
tileHeight.

col (integer) The column of the tile in the image grid for this z-slice, e.g., the floor of the tile x origin divided by
tileWidth.

zoomLevel (integer) The zoom level of tiles to retrieve. Zoom level 0 is the original scale, zoom level 1 is the first
downsampled octave, etc.

1.3. Developer Documentation 133

CATMAID Documentation, Release 2021.12.21

pixelPosition (integer array [x, y, z]) The stack space position in pixels of a location in the plane of the tile.
Usually this position is shared for many tile requests, e.g., the center of a stack viewer, and is used only to
generate a path using the z location in the stack.

Tile Source Types

Tile source types are listed by the enumeration integer ID referenced by tileSourceType:

1. File-based image stack

URL format:

<sourceBaseUrl><pixelPosition.z>/<row>_<col>_<zoomLevel>.<fileExtension>

2. Request query-based image stack

URL format:

<sourceBaseURL>?x=<col * tileWidth>
&y=<row * tileHeight>
&z=<pixelPosition.z>
&width=<tileWidth>
&height=<tileHeight>
&scale=<2^-zoomLevel>
&row=y
&col=x

3. HDF5 via CATMAID backend

Note: To use this tile source, the h5py Python library has to be installed.

This is the only tile source type which the CATMAID backend serves directly. Django retrieves tile
requests from an image volume stored in an HDF5 file. This is a convenience source intended for quick
exploration of small volumes only and does not scale to large volumes or many users.

As an exceptional source, this uses the following tile source parameters that should not be used by any
other source:

catmaidURL (string) Base URL of the CATMAID instance serving the volume, including trailing
slash.

projectId (integer) ID of the CATMAID project.

stackId (integer) ID of the CATMAID stack.

URL format:

<catmaidURL><projectId>/stack/<stackID>/tile?x=<col * tileWidth>
&y=<row * tileHeight>
&z=<pixelPosition.z>
&width=<tileWidth>

(continues on next page)

134 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

(continued from previous page)

&height=<tileHeight>
&scale=<2^-zoomLevel>
&row=y
&col=x
&file_extension=<fileExtension>
&basename=<sourceBaseURL>
&type=all

4. File-based image stack with zoom level directories

A variation on tile source type 1 where the zoom level is also a directory.

URL format:

<sourceBaseUrl><pixelPosition.z>/<zoomLevel>/<row>_<col>.<fileExtension>

5. Directory-based image stack

Like tile source types 1 and 4, but with all components being directories.

URL format:

<sourceBaseUrl><zoomLevel>/<pixelPosition.z>/<row>/<col>.<fileExtension>

6. DVID imageblk voxels

This type supports loading tiles from voxel data instances in DVID using imageblk (uint8blk,
rgba8blk) datatypes.

For DVID imageblk tile sources, sourceBaseURL should reference the data instance REST resource
with orientation information directly, that is:

<api URL>/node/<UUID>/<data name>/raw/<dims>/

fileExtension may also specify a quality parameter, e.g., jpg:80.

Because orientations are just permutations of coordinates in the voxel volume, each orientation has a
slightly different URL format.

XY format:

<sourceBaseUrl><tileWidth>_<tileHeight>/<col * tileWidth>_<row * tileHeight>_
→˓<pixelPosition.z>/<fileExtension>

XZ format:

<sourceBaseUrl><tileWidth>_<tileHeight>/<col * tileWidth>_<pixelPosition.z>_
→˓<row * tileHeight>/<fileExtension>

ZY format (actually YZ, see note):

<sourceBaseUrl><tileWidth>_<tileHeight>/<pixelPosition.z>_<row * tileHeight>_
→˓<col * tileWidth>/<fileExtension>

1.3. Developer Documentation 135

https://github.com/janelia-flyem/dvid

CATMAID Documentation, Release 2021.12.21

Note: Because DVID prefers YZ axis ordering over ZY, note that tiles for that orientation must be
transposed to be consistent with other tile source types.

7. Render service

This tile source type retrieves image tiles from the dynamic render service used at Janelia Research Cam-
pus.

URL format:

<sourceBaseURL>largeDataTileSource/<tileWidth>/<tileHeight>/<zoomLevel>/
→˓<pixelPosition.z>/<row>/<col>.<fileExtension>

8. DVID imagetile tiles

This type supports loading tiles from tile data instances in DVID using imagetile datatypes.

For DVID imagetile tile sources, sourceBaseURL should reference the data instance REST re-
source directly, that is:

<api URL>/node/<UUID>/<data name>/tile/

Because orientations are just permutations of coordinates in the voxel volume, each orientation has a
slightly different URL format.

XY format:

<sourceBaseUrl>xy/<zoomLevel>/<col>_<row>_<pixelPosition.z>

XZ format:

<sourceBaseUrl>xz/<zoomLevel>/<col>_<pixelPosition.z>_<row>

ZY format (actually YZ, see note):

<sourceBaseUrl>yz/<zoomLevel>/<pixelPosition.z>_<row>_col

Note: Because DVID prefers YZ axis ordering over ZY, note that tiles for that orientation must be
transposed to be consistent with other tile source types.

9. FlixServer tiles

This type supports loading tiles from a FlixServer instance. This tile server generates images dynamically
and supports CATMAID’s default tile source URL format:

<sourceBaseUrl><pixelPosition.z>/<row>_<col>_<zoomLevel>.<fileExtension>

Additional GET parameters can be used to adjust color, dynamic range and gamma mapping:

136 Chapter 1. Documentation

https://github.com/saalfeldlab/render
https://github.com/janelia-flyem/dvid
https://github.com/fzadow/tileserver/

CATMAID Documentation, Release 2021.12.21

color = (red,green|blue|cyan|magenta|yellow|white) for coloring
min/max = [0, 2^16] for specifying the dynamic range
gamma = [0, 2^16] for the exponent of a non-linear mapping

For multi-channel images, a comma separated list can be used as parameter value (e.g.
color=cyan,magenta).

10. H2N5 tiles

This type supports loading tiles from the H2N5 server, which dynamically slices tiles from N5 tensor files.

The URL format for this source is:

<sourceBaseUrl>.<fileExtension>

However, unlike other sources, sourceBaseUrl is not a valid URL on its own. It contains several sub-
stitution strings the CATMAID replaces on each tile request. This is necessary to support n-dimensional
volumes. The substitution strings are:

%SCALE_DATASET% (optional) Where to insert the dataset name for different scale levels. Currently
these are s0, s1, etc., but in the future may be read from the N5 attributes of the parent dataset of
where this substitution string appears.

%AXIS_0% Position in the coordinates part of the H2N5 URL to replace with col * tileWidth

%AXIS_1% Position in the coordinates part of the H2N5 URL to replace with row * tileHeight

%AXIS_2% Position in the coordinates part of the H2N5 URL to replace with pixelPosition.z

While %AXIS_0% and %AXIS_1% could be inferred by parsing the URL for the slicing dimensions, note
that %AXIS_2% could not.

11. N5 image blocks

This type supports loading image blocks from N5 served over HTTP.

Unlike other sources, sourceBaseUrl is not a valid URL on its own. It contains several substitution
strings the CATMAID replaces on each tile request. This is necessary to support n-dimensional volumes.
The substitution strings are:

%SCALE_DATASET% (optional) Where to insert the dataset name for different scale levels. Currently
these are s0, s1, etc., but in the future may be read from the N5 attributes of the parent dataset of
where this substitution string appears.

Further, sourceBaseUrl has special path components. It should end in a path component specifying
the ordered dimensions from which image data should be sliced, separated by underscores. For example,
2_1_0 will slices N5 dimensions 2, 1, and 0 as the x, y, and z stack dimensions, respectively.

This tile source will also look for a path component ending in .n5 to use as the N5 root directory. If it
does not find such a component, it will assume the origin is the root N5 directory.

For example:

https://catmaid.org/path/root.n5/group/dataset/%SCALE_DATASET%/raw/0_1_2

1.3. Developer Documentation 137

https://github.com/aschampion/h2n5
https://github.com/saalfeldlab/n5
https://github.com/saalfeldlab/n5

CATMAID Documentation, Release 2021.12.21

12. JHU/APL Boss tiles

This type supports loading tiles from a JHU/APL Boss instance, using a manually entered API to-
ken for authorization. The API token entered through the front-end layer control UI is passed in an
Authorization header with all tile requests.

Currently only XY tiles are fully supported. tileWidth and tileHeight must be equal.

sourceBaseURL should reference the REST resource directly:

<instance URL>/v1/tile/<collection>/<experiment>/<channel>/

XY URL format:

<sourceBaseURL>xy/<tileWidth>/<zoomLevel>/<col>/<row>/<pixelPosition.z>

13. CloudVolume tiles

Using this type, the back-end is instructed to go get a tile through the cloudvolume library. The URL can
be anything that CloudVolume can take, e.g. a Neuroglancer Premcomputed image dataset like public
Google hosted FAFB dataset:

precomputed://gs://neuroglancer-fafb-data/fafb_v14/fafb_v14_clahe

Currently, only HTTPS mode is supported (i.e. no explicit credentials).

14. Neuroglander precomputed image blocks

This type supports loading image blocks from Neuroglancer Precomputed format served over HTTP.

Like with N5 image blocks and unlike other sources, sourceBaseUrl is not a valid URL on its own.
It contains several substitution strings the CATMAID replaces on each tile request. This is necessary to
support n-dimensional volumes. The substitution strings are:

%SCALE_DATASET% (optional) Where to insert the dataset name for different scale levels. Currently
these are s0, s1, etc., but in the future may be read from the N5 attributes of the parent dataset of
where this substitution string appears.

Further, and also like the N5 source, sourceBaseUrl has special path components. It should end in
a path component specifying the ordered dimensions from which image data should be sliced, separated
by underscores. For example, 2_1_0 will slices chunk dimensions 2, 1, and 0 as the x, y, and z stack
dimensions, respectively.

This tile source will also look for a path component ending in /info to use as the dataset root directory.
If it does not find such a component, it will assume the origin is the root directory.

For example:

gs://neuroglancer/basil_v0/son_of_alignment/v3.04_cracks_only_normalized_
→˓rechunked/%SCALE_DATASET%/0_1_2

Also note that Neuroglancer datasets can have a property called voxelOffset, which by default is (0,
0, 0). If set to other values the dataset will be artificially resized at the origin accordingly. To Match
voxel coordinates between CATMAID and Neuroglancer, the respective CATMAID stack needs to have
the voxelsOffset metadata field set with the the value and “Apply primary stack voxel offset” has to
be checked in the Settings Widget (default). For instance, if the zero-zoom level voxel offset is (-3072,

138 Chapter 1. Documentation

https://github.com/jhuapl-boss/boss
https://github.com/google/neuroglancer/tree/master/src/neuroglancer/datasource/precomputed

CATMAID Documentation, Release 2021.12.21

-3072, 0), then the metadata of the CATMAID stack should look like this: {"voxelOffset":
[-3072, -3072, 0]}.

Backend Representation

Tile source parameters are stored in the Stack Django model. To create a new tile source type, one needs only to
establish a convention for the integer that enumerates that type (after communication with the developers) and begin
using it in stacks.

To support cropping, the backend also implements tile sources. To support cropping for a new
tile source type, implement a method in catmaid.control.cropping.CropJob like other
get_tile_path_<tileSourceType> methods that returns the correct URL, then make sure it is called
from the CropJob.initialize method.

Frontend Retrieval

The front end implements tile source URL generation in django/applications/catmaid/static/js/
tile-source.js. To define a new tile source type, follow the convention of the existing tiles sources
by creating a function that returns an object with the appropriate getTileURL, getOverviewURL, and
getOverviewLayer methods. The overview URL should locate a thumbnail of the current stack z-section.
Then map the tileSourceType enumeration of your tile source type to your implementation in CATMAID.
TileSources.

1.3.4 Creating widgets

Individual tools and views on the data are displayed in individual windows, so called widgets. This section will go
over the steps required to create a new widget and how widgets can interact.

To make CATMAID of a new widget, the new window has to be registered:

CATMAID.widget(name, options);

The name is an arbitrary unique string that is used to refer to the new widget. With the help of the options
object, more detail about what the widget should do, can be specified. For instance, general event handlers for e.g.
initialization and destruction can declared. See below for more information.

Registering widgets this way allows for a very modular and extensible design. New UI elements and tools can be
added without any change in CATMAID itself.

If the widget registration was successful, the new widget can be instantiated by calling:

CATMAID.createWidget(name);

Widget options

Details on how a widget should be realized, is specified in the options object during widget registration. The
following fields are required:

Field Value
getName Function, returning human readable name of the widget.
getContentID Function, returning the expected container ID used for controls
createContent Function, called with a DOM container where the widget content can be placed in

1.3. Developer Documentation 139

CATMAID Documentation, Release 2021.12.21

Additionally, the following fields can be used:

Field Default Value
helpText undefinedString, describing the usage of this widget.
class undefinedString, containing a CSS class name that the widget window should get assigned
controlsID undefinedString, containing the expected container ID used for controls
createControlsundefinedFunction, called with a DOM container where controls can be placed in
destroy undefinedFunction, called when the widget should be destroyed. Own handlers should be

unregistered in here.

Example widget

In this section, the information above is used to create an example widget. It registers itself with CATMAID and can
be opened. Like it is explained in Contributing to CATMAID, the widget is defined with an IIFE:

(function(CATMAID) {
CATMAID.widget('test-widget', {
getName: function() { return "Test widget"; },
getContentID: function() { return "test-widget"; },
createContent: function(container) {

// Add some example text
}

});
});

This widget has one button to refresh

1.3.5 Creating New Data View Types

There are currently only rather general data view types available in CATMAID. If these don’t suit your needs, you can
just add your own. A data view can then configure your new data view type and be used as a CATMAID front page.

To add a new data view type, you basically need to define two things:

• A Django template that defines the internals of your view type and

• an entry in the data_view_type table to link data views to it.

In the following both steps will be discussed. Details about how to use data views can be found in the section Using
Data Views.

A new Django template

Data view types are written in the Django template language. To make a new template accessible to CATMAID, put
it in the django/templates/catmaid directory. There reside the templates for the already available data view
types as well. Obviously, it is good practice to choose a template name that has something to do with what it does.
E.g., the Project List data view template is called project_list_data_view.html.

Data view templates get passed a context in which they live. There you have access to the variables data_view,
projects and config. With data_view the template gets access to the current DataView model for which
it is the data view type. A list of all projects is available in the projects variable. If you have a look at the
existing templates you can see that this list is usually walked (e.g. with a for tag) to render each project and its
stacks. Also, you need not to deal with the sort option yourself. This is already dealt with in the Django view.

140 Chapter 1. Documentation

https://docs.djangoproject.com/en/dev/topics/templates/

CATMAID Documentation, Release 2021.12.21

Therefore, projects is already sorted when requested. In the config variable one gets access to the already
parsed configuration for the data view to render. This will keep the options defined for a data view.

A template can now do whatever it wants with these variables. The available templates start with these lines:

{% load data_view_config %}
{% include "catmaid/common_data_view_header.html" %}

The first thing is to load custom template tags and filters to make e.g. option handling easier. The file lives in the
folder django/applications/catmaid/templatetags/ and you might want to have a look at it.

Next, another template (common_data_view_header.html) is included. This just prints a simple CATMAID
header text.

The available templates then start with option parsing, e.g:

{% with opt1=config|get_or_none:"opt1"|default_if_none:0 %}
{% with opt2=config|get_or_none:"opt2"|default_if_none:"center" %}
...
{% endwith %}
{% endwith %}

There is made use of Django’s template filters and a custom one (get_or_none) to get a configuration option or a
default. Let’s take the first line as an example: within this with-block a new variable variable is assigned: opt1. It’s
value is created as follows: Use config (see above) as the input for the get_or_none filter, parametrized with
"opt1". This filter checks if its argument (opt1) exists in the input dictionary (config) and returns its value if
that is the case. If is not found, None is returned. This result is then passed to the default_if_none filter which
in turn is parametrized with the option’s default value (0 in that case). It checks if the input is none and if, this is the
case, returns the parameter, otherwise the input.

Note: By default, Django doesn’t support the Python keywords None, True and False in templates. Therefore, you
might use 0 as False and 1 as True.

Within those with-blocks you can then write your actual presentation logic. Have a look at the existing templates to
get an idea how this could be done.

A new table entry

If your template is ready, you can make it known to CATMAID and thereby usable by data views. To do so you need to
add an entry to the table data_view_type. This is currently not available from within the Django admin interface,
so you have to do it manually.

A data view type needs basically three things there:

• Name it, give it a title, e.g. “Filtering data view type”.

• It needs a so called code_type. This is the template name without file extension, e.g. “filtering_data_view”.

• Also, provide a descriptive help text that explains what this view type does, what options it has and maybe
provide an example. Put this into the comment field.

As an example, in the following the entry in the data_view_type table of the Project List data view type is shown:

title:

Project list view

code_type:

1.3. Developer Documentation 141

CATMAID Documentation, Release 2021.12.21

project_list_data_view

comment:

A simple adjustable list of all projects and their stacks.
This view is rendered server side and supports the display
of sample images. The following options are available:
"sample_images": [true|false], "sample_stack": ["first"|"last"],
"sample_slice": [slice number|"first"|"center"|"last"]. By
default projects are sorted. Use "sort":false to turn this
off. Thus, a valid sample configuration could look like:
{"sample_images":true,"sample_stack":"last","sample_slice":"center"}

Having done this, a data view should then be able to use your data_view_type (also from within Django admin).

1.3.6 Deep Link URL Format

CATMAID supports deep link URLs that allow users to share persistent references to particular stack locations and
views. These URLs also support opening tools, multiple stack viewers, and limited specialized behaviors such as
activating nodes in the tracing tool. Which stack mirror is used for a referenced stack is up to the client instance.

CATMAID deep link URLs are standard HTTP URLs with query strings, for example:

https://localhost/cat/?pid=1&zp=0&yp=0&xp=0&tool=navigator

All URLs begin with the protocol, hostname and path (including trailing slash) of the CATMAID instance configured
during installation.

Required Query Parameters

pid (integer) ID of the project to open.

zp (integer)

yp (integer)

xp (integer) Coordinates in project space (nm) to center in the stack viewer.

tool (string) Name of the tool to open. Must be one of navigator, tracingtool, or
classification_editor.

Optional Query Parameters

active_node_id (integer) Specifies the ID of a node to activate in the tracing tool.

sid<n> (integer) Opens the stack with this ID in a stack viewer. Multiple stacks can be opened by passing incre-
mental indexes, i.e., sid0, sid1, etc. The index must start at 0.

s<n> (integer) Zoom level for the corresponding stack ID above. That is, s0 specifies the initial zoom level for the
stack viewer viewing the stack ID passed in sid0.

composite (integer) If 1, load all stacks as layers in a single stack viewer rather than separate stack viewers.

sg (integer) Open a stack group. If present, individual stacks are ignored.

sgs (integer) Initial zoom level for a loaded stack group.

current_dataview (integer) ID of a data view to switch to.

142 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

layout (string) An optional layout specification in the format of layouts described in the Settings Widget. E.g.
layout=h(XY, { type: "neuron-search", id: "neuron-search-1"}, 0.6) to show
a Neuron Search widget in a 1/3 wide column on the right. Depending on the widget referenced, additional
options are available. For instance, the Neuron Search can be instructed to search for a particular annota-
tion right away: layout=h(XY, { type: "neuron-search", id: "neuron-search-1",
options: {"annotation-name": "papers"}}, 0.6). Available options are collected below.
Additionally, individual layout elements can have a "skeletons" parameter (like the "options" parame-
ter), which can take a list of skeleton IDs or, alternatively objects having an id and a color field. The color
can be defined in terms of common CSS color representations like “red” or “rgb(0.2,1,0.5)”. These skeletons
are added to the newly created widgets, if possible.

token (string) An optional project token to give access to a particular project. If this is used, the link becomes
essentially an invitation link. With admin permissions, this tokens can be generated in the Project Management
widget.

Legacy Query Parameters

These parameters may be found in old URLs but are no longer generated and may not be properly processed.

x (integer)

y (integer)

z (integer) Coordinates in project space to center the stack viewer. Used in an obsolete query format where no project
or stack ID were specified and defaulted to 1.

s (integer) Zoom level for the stack viewer.

active_skeleton_id (integer) Specifies the ID of a skeleton to activate in the tracing tool.

account (string) Username with which to login to CATMAID.

password (string) Password with which to login to CATMAID.

URL widget options

Neuron Search Supports annotation-name to search for a particular annotation and
with-subannotations to include sub-annotations for this search.

1.3.7 Database Migrations

Historically, keeping your database in sync with what’s expected by the code has been error-prone and annoying, but
CATMAID uses a system for schema and data migrations called South which simplifies and structures this task. In
contrast to past versions of CATMAID, South migrations won’t get applied automatically. So when updating the code
base, the database has to be updated as well. This page describes what you need to know about these migrations.

1.3. Developer Documentation 143

http://south.aeracode.org/

CATMAID Documentation, Release 2021.12.21

General things about South

South has been built to bring migrations to Django projects. Since CATMAID’s backend is Django based, it can make
use of it. South is stable, tries to be simple and is database-independent. CATMAID, however, depends on some
PostgreSQL specific features and database-independence is therefore not really important here.

Every migration is kept in its own file. They are stored in a migrations folder within a Django application’s directory.
In the case of CATMAID this is:

django/applications/catmaid/migrations

In there you find files like these:

0005_add_ontology_visibility_setting_to_profile.py
0006_add_restriction_tables.py
0007_add_treenode_parent_index.py

Each migration file groups logically connected changes to the database schema and data. As can be seen above,
migrations are ordered by the first characters of their file name. Obviously, the order is important and when creating
migrations you want to make sure to not create ambiguous file names.

A migration file contains of a class with a forward() and a backward() method as well as a dictionary called
models which contains all available models which were around when the migration was created (i.e. it contains the
changes of the migration; read more about it here).

The main way to interact with South is with the help of manage.py commands. South adds multiple commands to it,
the most often used will probably be schemamigration to create new migrations and migrate to run migrations
(see below). To use manage.py, you need to be in the virtualenv environment (activate it with workon catmaid).
The commands in other parts of this page assume you are in the virtualenv and the folder where the manage.py file
lives.

Of course, the migration files need to be added to the source code management.

Checking for new migrations and applying them

To check if there are new migrations that need to be applied, run:

./manage.py showmigrations

CATMAID utilizes two other applications that use South as well: guardian and djcelery. If you want to refer only to
CATMAID, do:

./manage.py showmigrations catmaid

If there is no migration that has not been applied, you will see a list like the following:

(*) 0005_add_ontology_visibility_setting_to_profile
(*) 0006_add_restriction_tables
(*) 0007_add_treenode_parent_index

The (*) marks indicate that a migration has been applied. In turn () would mean it hasn’t. So if migration 0007
wouldn’t be applied yet, it would read:

(*) 0005_add_ontology_visibility_setting_to_profile
(*) 0006_add_restriction_tables
() 0007_add_treenode_parent_index

144 Chapter 1. Documentation

http://south.readthedocs.org/en/latest/ormfreezing.html

CATMAID Documentation, Release 2021.12.21

And if you would then want to apply migration 0007, you would need to either run:

manage.py migrate catmaid 0007

to only apply this particular migration. Alternatively, you can apply all not yet applied migrations with:

manage.py migrate catmaid

I want to make a change to the database

Usually, changes to the database are needed because there have been changes to CATMAID’s models in the file (like
adding a new field to a class):

django/applications/catmaid/models.py

If this is the case, you can let South create a migration for this change by running:

manage.py schemamigration catmaid [title] --auto

This will create a new file in CATMAID’s migration folder. It will make sure it has the next free ID and [title]
is the remainder of the file name. If [title] isn’t provided, South will come up with an own name. The parameter
--auto instructs South to inspect the models module of CATMAID and to create a migration based on the changes
with respect to the last migration.

If you in turn wanted to create an empty migration to do changes the database that are not based on the models module,
run:

manage.py schemamigration catmaid [title] --empty

These commands, however, do only create the migration file. They don’t apply it. This has to be done manually
afterwards.

I want to use raw SQL in a migration

Using raw SQL in a migration is is perfectly possible. Instead of using the object relational mapper, you can execute
SQL statements directly within the forward() and backward() methods within the migrations file. To do so you
would first need to create an empty migration by running:

manage.py schemamigration catmaid [title] --empty

Edit the new file and pass your SQL statements as string arguments to the db.execute() method. For instance:

db.execute("DROP INDEX IF EXISTS treenode_parent_id_index")

If you actually add or delete tables or fields, make sure that the models dictionary is consistent with it (e.g. doesn’t
state a model has the field you just deleted manually).

1.3. Developer Documentation 145

CATMAID Documentation, Release 2021.12.21

Merge branches with migrations into branches with newer migrations

Of course, it can happen that one works on a branch where new migrations are added while another branch (e.g.
upstream’s master) got new migrations added, too. This might introduce problems when you want to merge one
branch into the other.

For example, let’s say the most recent migration on master starts with 0007. You create a new topic branch
based on this and you add a new migration with a name starting with 0008_add_column. After some time you
want to merge this branch back into master, which meanwhile also got a new migration with a name stating with
0008_add_table.

If you just merge your branch, both migration files will be present next to each other. South loads migrations in ASCII
sort order, so in principal both are at the correct position. This isn’t really a problem if those migrations don’t modify
the same models. You can then simply run migratewith the --merge option to apply those out of order migrations.

Though, this works in most situations, it is not very pretty. As an alternative, you might want to consider the following:
Re-create the migration(s) to have the correct ID, based on the upstream commits. This however needs some manual
work. So before merging a branch, check whether there are conflicting IDs and, if so, do the following in the topic
branch (referring to the example above):

1. Roll back the migrations to the last non-conflicting state, here 0007:

manage.py migrate catmaid 0007

2. Delete all conflicting migrations in the topic branch. If custom migration code has been added (like raw SQL),
make sure to keep it around.

3. Merge the branch with the newer migrations into your topic branch (e.g. upstream/master).

4. Re-create your migrations (the new files will get correct IDs):

manage.py schemamigration catmaid [title] --auto

Note that this will create one migration containing all the database changes you made. Of course, you can also
create migrations for single models if you want.

If you have custom migration code, create new empty migrations and add your custom migration code to them:

manage.py schemamigration catmaid [title] --empty

5. Migrate your database to make sure everything works and if so, create a new commit to add the new migrations

6. Merge the topic branch into the target branch

Also note that the South documentation has an own section on team workflows. You can find it here.

I just want to drop the database and start from scratch

If you’re really sure that you don’t need any of the data in your catmaid database, you can just drop the database and
start again:

Drop the database:

sudo -u postgres dropdb catmaid

Run the commands generated by the createuser.sh script to make sure that the database, the database user, various
functions and the plpgsql language are all created. The parameters to that script are the database name, the database
user and the password for that database user:

146 Chapter 1. Documentation

http://south.readthedocs.org/en/latest/tutorial/part5.html

CATMAID Documentation, Release 2021.12.21

scripts/createuser.sh catmaid catmaid_user p4ssw0rd | sudo -u postgres psql

(You may get errors saying that the user role has already been created, and that the functions already exist. You can
safely ignore these.)

Now visit your CATMAID web page and the schema of the database will be updated. If you want to add back the
example projects, you need to run the script scripts/database/insert-example-projects.py.

1.3.8 Django Unit Tests for CATMAID

If you want to be able to run the unit tests, you will need to allow the catmaid database user (catmaid_user by
default) to create new databases.

Start a postgres shell with:

sudo -u postgres psql

You can change the role with:

postgres=# ALTER USER catmaid_user CREATEDB;
ALTER ROLE

. . . and you should also add this line at the top of /etc/postgresql/XversionX/main/pg_hba.conf:

local test_catmaid catmaid_user md5

. . . and then restart PostgreSQL:

sudo /etc/init.d/postgresql restart

Running tests

You can run the tests with:

./manage.py test

If you see an error:

DatabaseError: must be owner of extension plpgsql

Fix it with:

sudo -u postgres psql
ALTER ROLE catmaid_user WITH superuser;

1.3. Developer Documentation 147

CATMAID Documentation, Release 2021.12.21

Loading the test fixtures (schema and data) into a new CATMAID database

Directly editing the data in the test fixtures (django/applications/catmaid/fixtures/
catmaid_testdata.json) would be very error-prone. A better idea is to create a new CATMAID instance
pointing to a database that only contains the fixture data. Then you should only very carefully make changes to the
CATMAID instance where they are required to support a new test you want to add.

To create such an instance, follow the usual installation instructions for CATMAID up to the point where you would
use the createuser.sh script, and make sure that you specify a new database name, e.g. catmaid_fixture:

scripts/createuser.sh catmaid_fixture catmaid_user p4ssw0rd | sudo -u postgres psql

Then, rather than loading the usual example data, just import the fixture data:

psql -U catmaid_user catmaid_fixture < django/applications/catmaid/fixtures/catmaid_
→˓testdata.json

If you want to start again and reload the fixture data into the test database, you can do:

sudo -u postgres dropdb catmaid_fixture
scripts/createuser.sh catmaid_fixture catmaid_user p4ssw0rd | sudo -u postgres psql
psql -U catmaid_user catmaid_fixture < django/applications/catmaid/fixtures/catmaid_
→˓testdata.json

Dumping changes in a CATMAID instance back to the test fixtures

Suppose that to create the data for your test, you needed to add a skeleton and a neuron in your CATMAID instance.
You should then dump the database back to the fixture files afterwards:

cd ~/catmaid
scripts/database/dump-database.sh catmaid_fixture > django/applications/catmaid/
→˓fixtures/catmaid_testdata.json

Then run git diff to check that the additions to the fixtures make sense. (It’s a good idea to check how these
changes to the fixtures affect which tests pass.)

Test coverage

If you install coverage.py (pip install coverage in your virtualenv) you can generate test coverage statis-
tics with:

coverage run ./manage.py test catmaid

Then run:

coverage html

. . . to generate HTML output in htmlcov/index.html.

148 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

GUI tests

To make sure some typical workflows work with development and release versions, we maintain a small set of Se-
lenium GUI tests. Those are defined as Django unit tests and live under django/applications/catmaid/
tests/gui/. To run these tests locally the GUI_TESTS_ENABLED setting has to be set to True or otherwise all
GUI tests are ignored. Our CI test setup activates GUI tests automatically and also sets GUI_TESTS_REMOTE to
True, which allows it to run Selenium tests on the virtual machines of saucelabs.com automatically.

1.3.9 Models, State and Commands

Models

To talk to CATMAID’s back-end, its API is used. To make this more convenient and provide extra functionality, some
of these APIs are abstracted into front-end models, which are defined in the JavaScript files in the models sub-folder
of the CATMAID library:

django/applications/catmaid/static/lib/catmaid/models/

The majority of the common front-end operations can be found in there. A typical function, like node creation, has a
signature like this:

CATMAID.Neurons.create: function(state, projectId, x, y, z, parentId, radius,
confidence, useNeuron, neuronName)

All back-end parameters are available plus a state object. This state is required as a safety measure to not accidentally
change data that was already updated by someone else. The next section goes into more detail about that.

State

In a collaborative environment, clients can never be sure if the information they see is the most recent one. Therefore,
some CATMAID APIs support state checks to prevent changes by a client that was not aware of changes done by
another client. Such a state is sent along with the request created by our front-end models and consists of information
about the node of interest and its neighborhood.

To represent the (local) state the client sees the world in, different state implementations can be used. The tracing
layer, for instance, has its own implementation and undo/redo utilizes a much sparser representation. States provide
access to nodes, their state information and special serialization methods. State information on various parts of a local
node neighborhood can be represented in parallel. This allows for flexibility and granular access control. Information
on individual nodes, their parents, children and links can be stored. Connectors are supported as well.

A complete node neighborhood state consists of the node, children, parent and links. A node state represents a node
ID along with an edition time, a parent state encapsulates this information about a parent of a node. Then there is also
a no chack state, which causes the back-end to disable state checking for a request.

Different actions require different states, below you find a list of stateful endpoints and what they expect. This list
isn’t complete yet, some functions don’t support state checks, yet.

1.3. Developer Documentation 149

CATMAID Documentation, Release 2021.12.21

Operation Required state
Delete node Neighborhood state for node to node
Create node Parent state for node append, else none
Insert node Node state and children of edge
Move node Node state
Edit node radius Node state
Edit node confidence Node state
Create connector For initial links partner node states, else none
Delete connector Connector neighborhood state
Update connector confidence Connector node state
Update connector links Connector and link state
Create/update/remove annotation Node state
Create/update/remove tag Node state
Change neuron name Neuron state
Link connector Node and connector state
Unlink connector Node and connector state

Undo

Some of the user user actions are reversible, they can be undone and redone. Undoing a command is as simple as
pressing Ctrl + Z. Alternatively, the history dialog accessible through the F9 key can be used, where redo can be
selected as well. Actions that can be undone are listed below and CATMAID wraps these in so called commands.
These maintain information about the applied changes and their inverse. This is a list of currently available commands
and what their inverse operation is:

Operation Inverse
Delete node Create node, along with connectors
Create node Delete node
Insert node Delete node
Move node Move node back
Edit node radius Set original radius
Edit node confidence Set original confidence
Create connector Delete connector
Delete connector Create connector and links
Update connector confidence Set original confidence
Update connector links Restore original links
Create/update/remove annotation Delete/reset/create annotation
Create/update/remove tag Delete/reset/create tag
Change neuron name Set original name
Link connector Unklink connector
Split skeleton Block undo
Join skeletons Block undo

Splitting and joining skeletons results at the moment in undo being blocked for this point in history. That is, commands
executed before splitting or joining, can’t be undone for now.

Commands are typically defined in the same file as the model functions they wrap.

Warning: The CATMAID AMI is not currently maintained and provides an outdated version of CATMAID.
Consider installing CATMAID from scratch or using a Docker image instead.

150 Chapter 1. Documentation

CATMAID Documentation, Release 2021.12.21

If you are interested in updating the CATMAID AMI, please let us know on the CATMAID mailing list.

1.3.10 Creating a CATMAID Instance on EC2

If you use Amazon’s EC2 service to host web services in the cloud, you may find it easiest to create a new EC2
instance with a running CATMAID from our new AMI (Amazon Machine Image). You can launch an EC2 instance
(in the eu-west-1 zone, directly from this link or if you want to find the AMI by hand in the public images in
eu-west-1, its AMI ID is: ami-ec545e98.

This AMI is based on Canonical’s Ubuntu 12.04 (precise) i386 image, backed by EBS. It will run in a “micro” instance
(one of which is available in Amazon’s free tier for a year if you sign up for the first time) but for a production server
you would want a faster (and more expensive) virtual machine to run CATMAID on. (The CPU throttling on Micro
instances will make performance very unpredictable.)

Launching the EC2 Instance

When you launch the EC2 instance, make sure you choose a security group (or security groups) that include at least
SSH (TCP port 22) and HTTP (TCP port 80).

Logging In

You should log in over SSH with the username ubuntu and specifying as your identity file the private key that you
downloaded from Amazon after creating your keypair; for example:

ssh -i ~/.ssh/my-aws.pem ubuntu@whatever.compute.amazonaws.com

The ubuntu user can gain root privileges using sudo, which doesn’t require a password. The CATMAID code is
owned by (and runs as) the catmaid user, so if you wish to change the code, you should switch to that user:

sudo su - catmaid

The source code is in /home/catmaid/catmaid/.

Server Configuration

The AMI is configured to use Nginx + Gunicorn; by default it is configured to use 4 synchronous worker threads,
which can be changed in /etc/init/gunicorn-catmaid.conf. You can restart Gunicorn with:

sudo initctl restart gunicorn-catmaid

1.3.11 Creating CATMAID extensions

In the past, anyone wanting to extend CATMAID for their specific use case would need to fork the main repository,
making it difficult to take advantage of future improvements to mainline CATMAID, and decreasing utility of the
extension to people who may want to make use of it later. Therefore, we have designed the extension system to allow
third parties to create external modules which interface with mainline CATMAID without having to change it.

If all that is needed is a modification or extension of front-end code (i.e. no new back-end functionality or database
schema changes), it might be enough to configure static front-end extensions. What these are is explained at the end
of this section.

1.3. Developer Documentation 151

https://groups.google.com/forum/#!forum/catmaid
https://console.aws.amazon.com/ec2/home?region=eu-west-1#launchAmi=ami-ec545e98

CATMAID Documentation, Release 2021.12.21

Overview

CATMAID extensions are python modules which work as Django apps. When that module is made available to the
python environment, Django can pick up any database models, API endpoints, and static files associated with the
app, and code in the app can interact with code in mainline CATMAID. This modular approach allows much greater
interoperability between different versions of CATMAID and the extension.

In the documentation below, we use a fictional extension called myextension.

Installing an Extension

1. Install the app into your python environment, either by using pip install from PyPI, or cloning the repo
and using pip to install from the local setup.py

2. Run python manage.py migrate to update the database as necessary. WARNING: it is possible for a
migration to irreversibly change or delete data in your existing database.

3. Run python manage.py collectstatic to pick up static files including stylesheets and frontend wid-
gets.

API endpoints should be available at BASE_URL/ext/myextension/...

Note: N.B. CATMAID will only recognise extensions it knows about - i.e. those listed in KNOWN_EXTENSIONS in
CATMAID/django/projects/pipelinefiles.py. Check this if it doesn’t seem to be working.

Creating an extension

To quickstart development, you may find this cookiecutter template valuable: clbarnes/CATMAID-ext-cookiecutter.
To do it yourself:

1. Decide on a name! We’ll use myextension here.

2. Make a branch of CATMAID, adding "myextension" to KNOWN_EXTENSIONS in CATMAID/django/
projects/pipelinefiles.py. Make a pull request for this to be included in mainline CATMAID - until
then, just use this branch for testing. This should be the only required change.

3. Create a directory which will hold the module and repository-related cruft (we recommend naming it some-
thing obvious like CATMAID-myextension), navigate to it, and then create an empty django app with
django-admin startapp myextension

4. Add an appropriate README, LICENSE, setup.py, MANIFEST.in and so on as laid out in Django’s docu-
mentation, in CATMAID-myextension. The manifest and setup files are particularly important.

5. If your extension includes javascript and/or stylesheets, create myextension/pipelinefiles.py to
make Django Pipeline aware of them. See synapsesuggestor and CATMAID for how they interoperate.

6. Develop away! For testing purposes, you will need to install the extension in your CATMAID environment -
it’s convenient to use pip install -e to install the module in editable mode and python manage.py
collectstatic -l.

152 Chapter 1. Documentation

https://github.com/audreyr/cookiecutter
https://github.com/clbarnes/CATMAID-ext-cookiecutter
https://docs.djangoproject.com/en/1.11/intro/reusable-apps/
https://docs.djangoproject.com/en/1.11/intro/reusable-apps/
https://github.com/clbarnes/CATMAID-synapsesuggestor/pipelinefiles.py
https://github.com/catmaid/CATMAID/blob/master/django/projects/mysite/pipelinefiles.py

CATMAID Documentation, Release 2021.12.21

Examples

• CATMAID-synapsesuggestor

• `CATMAID-autoproofreader <https://github.com/pattonw/CATMAID-autoproofreader>’_

• `CircuitMap <https://github.com/BrainCircuitsIO/circuitmap>’_

Community Standards

• See the contributing page.

• Don’t pick an extension name which may clash with other python modules.

• Don’t write any migrations which will change data or database tables in the underlying CATMAID installation.

• Be aware of CATMAID’s namespace - don’t add dependencies or tables which could cause name collisions.

• As per Django’s guidelines, namespace all static files, templates and so on to your app - e.g. static files should
be in a directory called myextension/static/myextension/<files>

Simple front-end extensions

The CATMAID front-end can load extra JavaScript files that are not part of the regular source tree. This allows adding
e.g. a new widget or custom analysis code without creating a full extension like explained above. This is sometimes
easier and can be configured through three variables in the settings.py file.

Which additional files are loaded is defined in the STATIC_EXTENSION_FILES variable, which is expected to
be a list of file names. They are expected to be relative to the path defined in STATIC_EXTENSION_ROOT.
It is the responsibility of the webserver in use (e.g. Nginx) is expected to map the relative URL path in
STATIC_EXTENSION_URL to the STATIC_EXTENSION_ROOT path, which allows the front-end to load the spec-
ified files from the static extension URL.

1.3.12 CATMAID Releases

New CATMAID releases are named after the date they are created, e.g. 2021-12-20. Most of the process to create
a new release is automated: a new release can be created with the script scripts/dev/make-release.py. This
will ask the user a few questions related to the release (contributors, name, etc.) and will then create a new release
branch, update the changelog and related files, create a new API doc version and update all version references.

This release branch can then be pushed to the main repository to have CI test it. Once it passes all tests it can be
merged into the master/main branch.

As a last step, a new development cycle needs to be started by running the scripts/dev/start-dev-cycle.
py script.

1.3. Developer Documentation 153

https://github.com/clbarnes/CATMAID-synapsesuggestor
https://github.com/pattonw/CATMAID-autoproofreader
https://github.com/BrainCircuitsIO/circuitmap

CATMAID Documentation, Release 2021.12.21

154 Chapter 1. Documentation

INDEX

A
A list of file names that are allowed

to be loaded by the front-end
through, 68

access is configured., 68

B
be loaded by the front-end to include

custom out-of-source extensions
in the, 68

C
cached_json, 85
cached_json_text, 85
cached_msgpack, 85
CELERY_WORKER_CONCURRENCY, 67
CLIENT_SETTINGS, 68
CM_CELERY_BROKER_URL, 113
CM_CELERY_TIMEZONE, 113
CM_CELERY_WORKER_CONCURRENCY, 113
CM_CLIENT_SETTINGS, 113
CM_CSRF_TRUSTED_ORIGINS, 113
CM_DEBUG, 112
CM_EXAMPLE_PROJECTS, 112
CM_FORCE_CLIENT_SETTINGS, 113
CM_FORCE_CONFIG_UPDATE, 113
CM_HOST, 112
CM_IMPORTED_SKELETON_FILE_MAXIMUM_SIZE,

112
CM_INITIAL_ADMIN_EMAIL, 111
CM_INITIAL_ADMIN_FIRST_NAME, 111
CM_INITIAL_ADMIN_LAST_NAME, 112
CM_INITIAL_ADMIN_PASS, 111
CM_INITIAL_ADMIN_USER, 111
CM_INITIAL_PROJECTS, 112
CM_INITIAL_PROJECTS_IMPORT_PARAMS, 112
CM_NODE_LIMIT, 113
CM_NODE_PROVIDERS, 113
CM_PORT, 113
CM_RUN_ASGI, 113
CM_RUN_CELERY, 113
CM_SERVER_SETTINGS, 113

CM_SUBDIRECTORY, 113
CM_WRITEABLE_PATH, 113
CMTK_TEMPLATE_SPACES, 68
confirmation is required., 69
CORS_OPEN, 114
CREATE_DEFAULT_DATAVIEWS, 68
created user. This can make user

management easier if a lot of
shared data, 68

D
DATA_UPLOAD_MAX_MEMORY_SIZE, 68
DB_CONNECTIONS, 111
DB_FIXTURE, 111
DB_FORCE_TUNE, 111
DB_HOST, 111
DB_NAME, 111
DB_PASS, 111
DB_PORT, 111
DB_TUNE, 111
DB_USER, 111

E
enabled, 86
export: annotations, 33
export: intra-connectors-and-original-placeholders,

33
export: intra-connectors-and-placeholders,

33
export: intra-connectors-only, 33
export: no-annotations, 33
export: no-connectors, 34
export: no-tags, 33
export: tags, 33

F
FORCE_CLIENT_SETTING, 68
front-end (e.g. a custom

widget). Defaults to
<catmaid-paith>/django/staticext.,
68

155

CATMAID Documentation, Release 2021.12.21

I
If enabled, logged in users will only

see other users when they share
a, 69

INSTANCE_MEMORY, 111

L
locked, 33

M
max_depth, 86
max_height, 86
MAX_PARALLEL_ASYNC_WORKERS, 68
max_width, 86
min_depth, 86
min_height, 86
min_width, 86

N
NEW_USER_CREATE_USER_GROUP, 68
NODE_LIST_MAXIMUM_COUNT, 67
NODE_PROVIDERS, 67

O
orientation, 86

P
postgis2d, 85
postgis2dblurry, 85
postgis3d, 85
postgis3dblurry, 85
project token. Disabled by default.,

69
project_id:, 86
PROJECT_TOKEN_USER_VISIBILITY, 69

R
REQUIRE_EXTRA_TOKEN_PERMISSIONS, 68

S
SPATIAL_UPDATE_NOTIFICATIONS, 68
stable, 33
STATIC_EXTENSION_FILES, 68
STATIC_EXTENSION_ROOT, 68
STATIC_EXTENSION_URL, 68
STATIC_EXTENSION_URL and

STATIC_EXTENSION_ROOT. Empty
by default., 68

T
terms and conditions. Disabled by

default., 69

The absolute local path where the
static extension files are
kept. These can, 68

The terms and conditions users need
to accept upon registering, if
this, 69

TIMEZONE, 113

U
USER_REGISTRATION_CONFIRM_TERMS, 68
USER_REGISTRATION_CONFIRM_TERMS_TEXT,

69

V
vagrant destroy, 123
vagrant resume, 123
vagrant snapshot list, 124
vagrant snapshot restore <name>, 124
vagrant snapshot save <name>, 124
vagrant ssh, 123
vagrant ssh-config, 123
vagrant suspend, 123
vagrant up, 123

W
Whether or not a matching user group

should be created for every
newly, 68

Whether or not a user registration
form requires users to accept a
set of, 69

156 Index

	Documentation
	User Documentation
	Administrator Documentation
	Developer Documentation

	Index

